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ABSTRACT 

The Modified Nelder-Mead algorithm for biclustering microarray gene expression data is 

proposed to overcome the poor convergence problem of NM method. It focuses on finding 

coherent biclusters with lower MSR and higher row variance. In Nelder-Mead method the 
median is measured instead of mean. The median provides much better estimates in place of 

mean. Before shrinking operation, the differential evolution is applied to obtain global minimal 

solution. A qualitative measure of the formed biclusters with a comparative assessment of 

results are provided on two benchmark gene expression datasets to demonstrate the 

effectiveness of the proposed method. Biological validation of the selected genes within the 

biclusters is provided by publicly available GO consortium. The patterns present a significant 

biological relevance in terms of related biological processes, components and molecular 

functions in a species-independent manner. In conclusion, it is found that the Modified Nelder-

Mead approach gives a better result over the conventional Nelder-Mead method and existing 

biclustering algorithms. 
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INTRODUCTION  

Cancer research is widely acknowledged as a highly 

promising domain for using machine learning. 

Extensive endeavours have been undertaken to explore 

prospective approaches for detecting and treating cancer 

[1]. 

 
Cancer is a condition that exhibits uncontrolled cellular 

proliferation and results as a growth of a tumor in the 

form of mass or lump. Lung, colon, breast, central 

nervous system (CNS), liver, kidney, prostate, and brain 

cancer are among the various types of cancer that can 

occur. In this research study we have examined four 

distinct types of cancer dataset: Lung, Breast, Brain, and 

Central Nervous System. Lung cancer is a prevalent and 

mortal cancer worldwide [2]. It can arise in the primary 

airway, specifically within the lung tissue. The outcome 

is the unregulated proliferation and growth of specific 
lung cells. Respiratory disorders, including emphysema, 

are linked to an increased risk of lung cancer 

development. Breast cancer is one of the most invasive 

malignancies, predominantly affecting women. It is 

considered the most severe cancer following lung 

cancer due to the elevated mortality rate among women 

[3,4]. The rapid development of abnormal brain cells 

that is indicative of a brain tumor [5,6,7] is a significant 

health concern for adults, as it can result in severe 

impairment of organ function and even mortality. A 

malignant brain tumour rapidly grows and extends to 

adjacent brain regions. The Central Nervous System 

(CNS), consisting of the brain and spinal cord, is 

responsible for numerous biological functions. Spinal 

cord compression and spinal instability often involve 

the vertebral and spinal epidural spaces as common sites 

for cancer metastases. Metastases represent the most 

common type of CNS tumour in adults [8]. 
 

Cancer is regarded as one of the primary causes of death. 

In order to preserve the lives of patients, advanced 

technologies such as artificial intelligence and machine 

learning are used to detect cancer at an early stage and 

accurately predict its type. The cancer diagnosis is 

performed by employing several medical datasets, 

which encompass microarray gene expression data, also 

known as the microarray dataset. Microarray 

technology offers unique experimental capabilities that 

have been beneficial to cancer research. Microarray data 
can be used to evaluate a wide variety of cancer types. 

High-dimensional data from DNA microarray 

experiments is known as gene expression data. It is 

widely used to classify and detect malignant disorders 

[9]. The most recent development of artificial 

intelligence, specifically machine learning, has 

simplified data analysis, including microarray data. The 

authors [10] demonstrated that machine learning 

algorithms can be employed for microarray dataset 

analysis for cancer classification. Utilizing expressions 

of genes in microarray datasets can serve as an effective 
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tool for diagnosing cancer. However, the number of 

active genes continues to grow, surpassing hundreds of 

thousands, while the available datasets remain limited in 

size, containing only a few subsets of samples. 

Therefore, one of the challenges in analyzing 

microarray datasets used for cancer classification is the 

curse of dimensionality. There is an additional concern 

regarding the characteristics of the current microarray 

datasets, which consist of numerous redundant and 

irrelevant features that have a detrimental impact on 

cancer classification results and computational expense 
[11]. The presence of duplicated and irrelevant features in 

very high-dimensional microarray datasets reduces the 

ability of the machine learning techniques to achieve 

accurate cancer classification and prediction [12]. These 

characteristics diminish the efficiency of the prediction 

model and complicate the search for meaningful 

insights. Consequently, it is necessary to employ feature 

selection methods in order to enhance the accuracy of 

the machine learning classifiers [13]. In order to 

enhance the effectiveness of widely used machine 

learning algorithms, many feature selection techniques 
have been employed to identify the most important 

features in malignant microarray datasets [14,15,16,17,18]. 

Even though filter feature selection approaches offer 

computational efficiency and the ability to reduce the 

dimensionality of microarray datasets, their accuracy 

results are limited since they evaluate features 

independently of classifiers. On the other hand, wrapper 

feature selection approaches interact with the classifier 

throughout the feature evaluation process, resulting in 

superior outcomes compared to the filter method. 

Nevertheless, the utilization of wrapper approaches on 

high-dimensional microarray datasets might be difficult 
and time-consuming. 

 

In recent years, several evolutionary and bio-inspired 

algorithms [19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35] have 

been implemented in literature to obtain the highest 

level of accuracy in the gene selection challenge. 

Although feature selection methods based on 

evolutionary algorithms can overcome the limitations of 

filter and wrapper methods, they may result in greater 

computational times for certain machine learning 

algorithms. Due to the high dimensionality and large 
number of features in malignant microarray datasets, it 

is not feasible to initially employ evolutionary 

algorithms as feature selection approaches. It is essential 

to reduce the features of microarray cancer datasets 

using filter feature selection. Then, an evolutionary 

optimization algorithm can be utilized to optimize the 

features further to maximize cancer classification 

performance. This motivated us to suggest a novel 

hybrid filter-differential evolutionary feature selection 

method that combines the strengths of both filters and 

evolutionary techniques to generate effective solutions 

with improved cancer classification performance for 
high-dimensional microarray datasets. 

 

The Differential Evolutionary (DE) is one of the 

superior optimization evolutionary algorithms, which is 

inspired by the biological evolution of the chromosomes 

in nature. DE performs well in convergence, although it 

is straightforward to implement and requires a few 

parameters to control and low space complexity. These 

attractive advantages of DE over other competitive 

optimization algorithms make DE gained widespread 

recognition for its exceptional efficacy in addressing 

various optimization challenges. Hence, this study aims 

to combine the superior performance of the DE 

optimization algorithm with filter selection methods to 

improve the classification accuracy of four microarray 

datasets by highlighting the most important and relevant 
genes. This is the first attempt at applying the hybrid 

filter and DE-based gene selection and classification of 

DNA Microarray data to the belief of our knowledge. In 

this paper, we propose a novel approach that combines 

feature selection methods based on differential 

evolutionary optimization algorithms and filter methods 

for identifying the most effective subset of features. Six 

common filtering methods were applied in this study to 

assign a score to each feature in microarray cancer 

datasets. These methods were then used to reduce the 

dimensionality of the datasets by retaining only the 
highest-ranked features and removing superfluous and 

irrelevant ones. The DE algorithm was then used to 

optimize the reduced cancer datasets, resulting in 

significantly improved results in cancer classification. 

Our proposed approach improved the classification 

performance of cancer when applied to microarray 

datasets with high dimensions.  

 

The remaining part of this paper consists of the 

following sections. Section 2 discussed recent works 

related to cancerous gene selection and classification 

performance suggested for high-dimensional 
microarrays. Section 3 describes proposed 

methodology and elaborates on the details of the phases 

of the proposed hybrid filter-DE feature selection 

methods. The experimental results and discussion of the 

proposed hybrid filter-DE are presented in Section 4. 

Finally, the paper is concluded, and future work is 

recommended in Section 5. 

 

RELATED WORKS 

This section presents and investigates the existing 

hybrid feature selection methods approaches that have 
recently been applied on cancer microarray datasets to 

improve cancer classification results. 

 

Karthika et al. [20] employed the mixture model (MM) 

in addition to the Fast Fourier Transform (FFT) on 

Microarray Gene Expression data for dimensionality 

reduction. In order to select an effective feature, they 

employed optimization techniques called Dragonfly. 

Nonlinear Regression, DT, RF, and SVM were used as 

classifiers in this study. The classifiers’ performance is 

evaluated both with and without feature selection 

methods. Finally, hyper-parameter tuning techniques 
such as Adaptive Moment Estimation (Adam) and 

Random Adaptive Moment Estimation (RanAdam) are 

used to improve classifiers, resulting in an accuracy of 

approximately 98% with the SVM classifier. This 

research did not address computational complexity and 
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model validation techniques. In addition, this study has 

notable limitations, including population-specific 

findings, reliance on MAGE data, and the influence of 

outliers. 

 

Elbashir et al. [21]. suggested a graph attention network 

(GAT) model to utilize diverse mRNA and miRNA for 

the prediction of the survival rate of non-small cell lung 

cancer (NSCLC) using multi-omics data. Chi-square 

analysis was used to select the most significant features 

to include in the model. They used the synthetic 
minority oversampling method (SMOTE) to make the 

dataset and the concordance index (C-index) more 

equal, and they tested the model on different sets of 

omics data. When using combined mRNA and miRNA 

data, they obtained the highest value of the C-index 

(0.82) along with the accuracy of 0.75. Chi-Square 

approaches cannot be regarded as the most ideal feature 

selection method for highly complicated and correlated 

biological data; this is a significant limitation of the 

current research. 

 
Zamri et al. [22] presented a hybrid metaheuristics 

optimization-based two-stage feature selection model. 

The SKF-MUT simulated Kalman filter was used in this 

study to pick microarray features that would make the 

ANN classification more accurate. The experimental 

results were validated using eight binary and multiclass 

benchmark datasets. SKF-MUT effectively selected the 

correct number of features and achieved 95–100% 

classification accuracy. The significant limitations of 

this study include model evaluation relying just on 

accuracy. Instead, other metrics like precision, recall, 

F1-score, or AUC-ROC might better assess the model’s 
performance along with accuracy. Further, the 

computational cost of feature selection has not been 

discussed. 

 

Ali et al. [23] presented a hybrid filter-genetic feature 

selection method to reduce microarray dataset 

dimensionality. The first part of this work used three 

filter methods: information gain (IG), information gain 

ratio (IGR), and Chi-squared (CS) to pick the most 

relevant microarray dataset features. The second phase 

used a genetic algorithm to optimize the features 
selected in the first phase of the proposed approach. The 

proposed method was validated utilizing breast, lung, 

CNS, and brain cancer microarray datasets. 

Experimental results indicated the suggested model 

improved performance of various common machine 

learning approaches in terms of Accuracy, Recall, 

Precision, and F-measure and the reported accuracy 

ranges from 92 to 100%. The limitations of the existing 

work can be included as computational cost of the 

feature selection process and also statistical validation 

not discussed. 

 
Elemam and Elshrkawey [24] introduced a two-stage 

hybrid feature selection. They began by using feature 

evaluation methods that included chi-squared, F-

statistics, and mutual information (MI) filters. In the 

second phase, they employed wrapper-based sequential 

forward selection with ML models like SVM, DT, RF, 

and KNN classifiers to find the optimal set of features. 

The model was then rigorously tested and validated 

using lung cancer, ovarian cancer, leukemia, and 

SRBCT datasets. The results were impressive, with an 

accuracy rate of almost 100 percent and a minimal 

number of selected features. However, the study’s 

performance was solely measured through accuracy, 

and the issue of feature redundancy was not adequately 

addressed. No statistical tests were conducted for model 

validation, which are the limitations of the existing work 
In a recent study, Abasabadi et al. [25] proposed a novel 

hybrid feature selection method to address the challenge 

of high dimensionality in microarray datasets. The 

methodology combines a filter approach (SLI-γ) with a 

genetic algorithm (GA). In the initial phase, 99% of 

irrelevant features were eliminated using SLI-γ. The 

second phase involved the GA optimization of the 

remaining relevant features to enhance classification 

accuracy. The results of this method were not only 

enhanced performance but also a significant reduction 

in execution time, which is a remarkable achievement. 
However, the inherent computational complexity 

associated with GA-based optimization remains a 

challenge, especially as the dimensionality of datasets 

increases. 

 

Almutiri et al. [26] proposed a hybrid feature selection 

method, GI-SVM-RFE, to improve classification 

accuracy in high-dimensional microarray datasets. The 

methodology combines the Gini index and SVM-RFE 

to select informative genes recursively. The results 

showed enhanced classification accuracy reported as 

90.67 compared to other methods without feature 
selection or using only the Gini index or SVM-RFE. The 

model not validated statistically. 

 

Similarly, Xie et al. [27] proposed the Multi-Fitness 

RankAggreg Genetic Algorithm (MFRAG). The 

methodology employed a genetic algorithm framework 

to integrate nine feature selection techniques. It uses an 

ensemble model to assess fitness and guide the 

evolutionary process. The results indicated that 

MFRAG demonstrated exceptional performance, 

achieving an accuracy between 87 and 100 percent, with 
increased classification accuracy using fewer selected 

characteristics. The limitations of this study include the 

potential for overfitting despite the use of the ensemble 

method and the absence of statistical discussion of 

model validation. 

 

Dash et al. [28] proposed a hybrid methodology for 

feature reduction utilizing harmony search and Pareto 

optimization. The authors employed the Harmony 

Search algorithm and Gene Selection (AHSGS) to 

identify the top 100 gene characteristics while also 
utilizing Bi-objective Pareto optimization to eliminate 

insignificant gene features. The model was assessed 

using four publicly available microarray datasets. In all 

instances, SVM surpassed other classifiers, attaining 

nearly 100 percent accuracy, with the exception of the 

Colon dataset, where ANN reached 82 percent 
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accuracy. The existing work exhibits notable 

limitations, particularly in the statistical analysis, as the 

results concerning significance levels are absent. 

Furthermore, the author failed to address the criteria or 

methodology employed to ascertain the Harmony 

Memory Consideration Rate and Pitch Adjusting Rate. 

Almutiri et al. [29] suggested a fusion-based feature 

selection framework aimed at mitigating high 

dimensionality and enhancing classification 

performance in gene expression microarray data. The 

framework utilizes a three-layer approach. The first 
layer has independent feature selection methods for 

gene ranking and scoring. The second layer consists of 

a threshold-based filtering step and a final decision layer 

employing majority or consensus voting. Experiments 

were conducted on five microarray datasets using an 

SVM classifier. The results revealed enhanced 

classification accuracy, achieving up to 97% on the 

Prostate dataset, alongside dimensionality reduction in 

comparison to existing methods. The primary 

limitations of this study are threshold sensitivity and 

dependence on voting strategy. 
 

Kilicarslan et al. [30] proposed a hybrid model to 

significantly improve cancer diagnosis. The 

methodology combined relief and stacked autoencoders 

for dimension reduction. Then, SVM and CNN were 

used to improve classification accuracy. The proposed 

method achieved the highest classification accuracies 

(98.6%, 99.86%, and 83.95%, respectively) on three 

microarray datasets (Ovarian, Leukemia, and CNS), 

outperforming SVM and other tested approaches. The 

study highlighted the effectiveness of dimension 

reduction in enhancing classification accuracy. 
However, this study has most notable limitations as 

limited comparison with other Feature Selection 

Methods and process of hyperparameter optimization 

for the CNN model. 

 

Baliarsingh et al. [31] proposed a microarray-based 

hybrid cancer classification model. The methodology 

utilized ANOVA to select relevant genes. Then, the 

enhanced Jaya (EJaya) algorithm and the forest 

optimization algorithm (FOA) were utilized to find the 

best gene subset, and SVM was used for classification. 
The proposed method reduced features and exceeded 

benchmark methods in classification accuracy from 96 

to 100%. The significant limitation of this study is the 

use of a single classifier (SVM), which may not 

generalize across datasets. In addition Parameter tuning 

may also affect EJaya and FOA algorithm performance. 

In this study, Almugren and Alshamlan [32] evaluated 

and compared contemporary hybrid approaches 

combining bio-inspired evolutionary algorithms for 

gene selection and cancer classification. The 

methodology, which was conducted with utmost 
thoroughness, involved reviewing various algorithms, 

with a focus on genetic algorithms (GA) as wrapper 

methods for gene selection. The results revealed that GA 

is the most extensively used and achieved the highest 

accuracy with a minimal number of selected genes 

ranging from 93 to 100%. In contrast, the Firefly 

algorithm has not been used as a wrapper approach. The 

limitation of existing work is the inadequate 

investigation of alternative hybrid algorithms. 

 

Sayed et al. [33] proposed this study to investigate the 

efficacy of a Nested Genetic Algorithm (Nested-GA) 

for feature selection in high-dimensional colon cancer 

microarray datasets. The methodology used a t-test to 

preprocess data and a nested approach with two Genetic 

Algorithms. The outer Genetic Algorithm (OGA-SVM) 

is used for gene expression data, and the Inner Genetic 
Algorithm (IGA-NNW) is utilized for DNA methylation 

data. The validation was performed using five cross-

folds, ensuring a thorough examination of the results. 

Nested-GA outperformed KNN and RF on the colon 

cancer dataset with 99.9% classification accuracy. This 

study’s main limitation is comparing Nested-GA to a 

limited set of feature selection algorithms (KNN and 

RF). A more extensive comparison with additional 

contemporary methods could yield more significant 

insights into its performance which is one of the 

limitations of this work. 
 

Similarly, Ghosh et al. [34] introduced a novel two-

stage hybrid model that integrates multiple filter 

methods with a genetic algorithm (GA) for cancer 

detection in microarray datasets. The methodology 

involved initially creating an ensemble of filter methods 

such as ReliefF, chi-square, and symmetrical 

uncertainty by looking at the union and intersection of 

their top-n-ranked features. Then, in the next step, GA 

is used to make the results of the first step even better. 

The result showed that the model did better than the best 

current methods, with an accuracy of about 100% and a 
smaller number of chosen features across five cancer 

datasets: colon, lung, leukemia, SRBCT, and prostate. 

The limitation of this study is that the performance 

evaluation is mainly based on accuracy and feature 

count. 

 

Hameed et al. [35] introduced a three-phase hybrid 

method to select and classify high-dimensional 

microarray data. To achieve this purpose, the author 

employed Pearson’s Correlation Coefficient (PCC) 

alongside Binary Particle Swarm Optimization (BPSO) 

or Genetic Algorithm (GA) and numerous classifiers. In 
the first phase, the methodology utilizes PCC as a filter 

for feature selection. Subsequently, the second phase 

involved the application of either BPSO or GA as 

wrapper methods. The data was classified using five 

distinct classifiers. The results showed improved 

classification accuracy, with BPSO outperforming GA 

in speed and effectiveness across multiple datasets and 

classifiers. Although the authors compared BPSO with 

GA, they did not study a broader range of optimization 

algorithms or hybrid approaches. This highlights the 

urgent need for a more comprehensive understanding of 
the best practices in feature selection and classification. 

As can be observed from the existing works discussed 

above, the filter methods have been utilized individually 
[18,24] or combined with the genetic algorithm 
[23,24,26,27,33,34,35] or wrapper feature selection [29,32] in 
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order to improve cancer classification on microarray 

datasets. In contrast, this study proposed integrating 

Differential Evolution (DE) with some popular filter 

methods to maximize cancer classification on 

microarray datasets. DE has several attractive 

advantages over other competitive optimization 

algorithms. DE performs well in convergence, although 

it is straightforward to implement and requires a few 

parameters to control and low space complexity.  

 

NELDER–MEAD METHOD 
The Nelder-Mead algorithm is a direct search method. 

Thus, it can be viewed as another version of the 

downhill approach [36]. This is a simple method 

commonly used in nonlinear optimization technique, 

which is a well-defined numerical method for problems 

for which derivatives may not be known. In many 

numerical tests, the Nelder-Mead method succeeds in 

obtaining a good reduction in the function value using a 

relatively small number of function evaluations. Apart 

from being simple to understand and use, this is the main 

reason for its popularity in practice. A large subclass of 
direct search methods, including the Nelder-Mead 

method, maintain at each step a non-degenerate 

simplex, a geometric figure in n dimensions of nonzero 

volume that is the convex hull of n + 1 vertices. Each 

iteration of a simplex-based search begins with n 

+ 1 vertices and the associated function values. One or 

more test points are computed along with their function 

values, and it continues for a specified number of 

iterations. In NM procedure the simplex method 

consists of exactly n + 1 solution vectors xk, where k = 

0,1, … n, where n is the number of decision variables or 

length of the solution vector. Among each of n + 1 
solutions represent a point in the search space will form 

a geometrical object in n dimensions called the simplex. 

Each operation of the Nelder-Mead simplex procedure 

is performed on the entire solution vector. 

 

The procedure takes an initial simplex as argument and 

returns the best solution in another final simplex, Every 

time the solutions in the simplex are ordered in 

increasing order by the objective values. The mean m is 

computed based on the average of n best solutions 

except the worst solution n + 1. The reflection point R 

of the worst point W is calculated which is shown in 

Figure 1(a). If the objective value of the reflection point 

is between the objective value of the best point B and 

the objective value of the second to worst point G, then 

only the reflected point is accepted. Otherwise the 

objective value of the reflection point is less than the 

objective value of the best point in the simplex a new 

expansion point E is calculated. The expansion point is 
illustrated by Figure 1(b). The best of the reflection and 

the expansion point is accepted to the simplex at the 

expense of the worst point n +1. If the objective value 

of the reflection point is larger than the second to worst 

point n in the simplex a contraction is performed. In case 

the reflection point has an objective value which is 

larger than the worst point the contraction point C1 

placed inside the simplex. The inside contraction point 

is only accepted if the objective is strictly smaller than 

the worst objective, Otherwise the simplex is shrunk. In 

case the reflection point has an objective value that is 
smaller than the objective of the worst point, a 

contraction point C2 situated outside the simplex is 

calculated. The contraction point is only accepted at the 

expense of the worst point if it has an objective smaller 

than the reflection point. Otherwise, the simplex is 

shrunk. The contraction points C1 and C2 are shown in 

Figure 1(c). Only in shrink operation the best point B is 

kept in a shrink step, the following n points are moved 

towards to the best point. Figure 1(d) illustrates the 

shrink point S. The Nelder–Mead procedure returns the 

solution point from the final simplex which has the 

smallest objective value. The Pseudo code for Nelder-
Mead method is shown in Figure 2. Four scalar 

parameters must be specified to describe an absolute 

Nelder-Mead method: coefficients of reflection (α), 

expansion (χ), contraction (γ), and shrinkage (δ). The 

general choices used in the standard Nelder-Mead 

algorithm (Lagarias et al 1998) are α= 1, χ= 2, γ= 1 , and 

δ= 1 

 

Figure 1 Nelder-Mead method transformations 
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Figure 2 Pseudo code for one iteration of Nelder-Mead method 

  

DIFFERENTIAL EVOLUTION ALGORITHM 

DE is a stochastic, population-based optimization algorithm which is introduced by Storn & Price [37]. DE optimizes a 

problem by maintaining a population of candidate solutions and creating new candidate solutions by combining existing 
ones according to its simple formulae, and then keeping whichever candidate solution has the best score or fitness on the 

optimization problem at hand. In this way the optimization problem is treated as a black box that merely provides a 

measure of quality given a candidate solution and the gradient is therefore not needed. It is developed to optimize real 

parameter, real valued functions. Procedure for Differential Evolution is given below. 

 Initialize the random solution xi 

 Calculate the objective function value f(xi) for all xi. 

 Select three points xr1, xr2 and xr3 from population and generate perturbed individual using 

o vi = xr1 + F × (xr2 – xr3) 

 Recombine each target vector xi with perturbed individual generated 

 Calculate the objective function value for ui. 

 Choose better of the two-function value at target and trial point ui and xi for next generation. 
 

The choice of DE parameters F and Pc can have a large impact on optimization performance. F is the real and constant 

factor which controls the amplification of the differential variation (xr2 – xr3). Pc is the crossover constant factor. 

 

Modified Nelder-Mead Method For Biclustering Microarray Gene Expression Data 

The NM method minimizes a function of n parameters by comparing the n + 1 vertices of a simplex and updating the 

worst vertex by moving it around a centroid. This simplex method is considered as a fast and simple algorithm. However, 

when optimizing high dimensional problems, NM method may have poor solution convergence because of that it may 

not define its moving directions well enough just by simple geometrical movements and it works well for unimodal 

problem. Therefore, the proposed method MNM considers the median instead of mean and DE is applied before shrinking. 

The median is the value that divides the distribution exactly into halves. The median is the balance point of the distribution. 
The main advantage of the median is that it is not affected by outliers as the mean. For skewed data the median provides 

a better estimate than mean. For outlier data the mean can be a misleading measure of central tendency and the median 
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value or the mode value are typically more accurate measures. DE uses floating-point for encoding population members 

and arithmetic operations for mutation. DE finds the true global minimum regardless of the initial parameter values and 

it converges quickly. For these reasons DE is combined with Nelder-Mead for finding the global optima. In DE, closer 

the population gets to the global optimum, more the distribution will shrink and therefore reinforce the generation of 

smaller difference vectors. 

 

Vertex Representation 

Each vertex is represented as a candidate solution for the problem. Solutions are encoded by means of binary strings of 

length N+M, where N and M are the number of rows and columns of the expression data respectively Mitra & Banka 

[38]. A bit is set to one if the corresponding gene or condition are present in the bicluster, and reset to zero otherwise. So 

the individual dimension of solution is represented by a real number. Figure 4 shows the representation of solution and 
its mapped bicluster representation. The mapping function of solution into a binary string representation of a bicluster is 

given in Equation (1) as follows: 

 

𝑦𝑖j = {𝑥𝑖j ≥ 0.5 1 

𝑜𝑡ℎ𝑒𝑟w𝑖𝑠𝑒 0 

  

(1) 

  

Were 

 
xij - Random value generated for jth gene/condition of ith point 

 

yij - Binary string representation of bicluster of xij 

 

In yij, if a bit is set to 1 then the corresponding gene or condition belongs to the encoded bicluster; otherwise, it is not. 

 

 
Figure 3.  Representation of vertex and its mapping to biclusters 

 

In NM and MNM based biclustering method, the fitness function of an individual is determined by evaluating the MSR 

and row variance. The fitness value of each vertex is calculated. Pseudo code for one iteration of Modified Nelder-Mead 

is shown in Figure 4. 
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Experimental Results and Analysis 

 

Experimental Setup 

The Nelder-Mead and Modified Nelder-Mead algorithms presented for the bicluster problem are implemented in 

MATLAB and run on an Intel i3 3.7 GHz. The minimum fitness value is obtained for 20 biclusters with the stopping 

criterion is up to the maximum iteration 1000. A good choice for F and Pc are 0.5 and 0.8 respectively. Table 1 shows the 

parameter and its value used in this work. 

 

Table 1 Parameter and its value 

Parameter Value 

Coefficient of reflection (α) 1 

Coefficient of expansion (χ) 2 

Coefficient of contraction (γ) 0.5 

Coefficient of shrinkage (δ) 0.5 

Constant factor (F) 0.5 

Crossover constant (Pc) 0.8 

Number of biclusters 20 

Number of Iterations 1000 

 

Bicluster Extraction for Yeast Cell Cycle and Human B-Cell Lymphoma Expression Dataset 
Granting to the problem formulation of an extracted bicluster should be satisfying a homogeneity criterion. The bicluster 

should satisfy two requirements simultaneously. The expression levels of each gene within the bicluster should be similar 

over the range of conditions. It means that it should have a low MSR score. On the other hand, the bicluster row variance 

should be high. The MSR represents the variance of the selected genes and conditions with respect to the homogeneity of 

the bicluster and row variance removes the simple bicluster. To quantify the biclusters homogeneity and size satisfy the 

Coherence Index (CI) is used as a measure for evaluating their goodness Mitra & Banka [38]. CI is defined as the ratio 

of MSR score to the size of the formed bicluster. The size of a bicluster increases while CI proportionately decreases. 

Table 2 and 3 show the experimental results obtained for yeast cell cycle data and human lymphoma data respectively. 

Totally five biclusters are chosen randomly from the total number of biclusters. Figure 5 and 6 show the fitness value 

obtained for yeast cell cycle data and human lymphoma data respectively. For both data sets the proposed MNM 
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outperforms NM algorithm because the DE allows Nelder-Mead to escape from local optimum and successfully continue 

to the global optimum. 

 

 
Figure 5. Plot of number of iterations versus fitness value on yeast cell cycle data 

 

 
Figure 6: Plot of number of iterations versus fitness value on human B-cell lymphoma data 

 

Table 2 summarizes the best biclusters for yeast cell cycle expression data after 1000 generations. The largest sized 

bicluster is found at MSR=212.22, with coherence index CI being minimal and indicating the goodness of the discovered 
partitions. The minimum value of CI is 0.0505 with a corresponding size of 4200 being the best in the table. As mentioned 

earlier, a low mean squared residue indicates a high coherence of the discovered biclusters. 

 

Table 2. Extracted biclusters for yeast cell cycle data 

Bicluster Genes Conditions Volume MSR Row Variance CI 

BC2 155 10 1550 156.79 812.89 0.1011 

BC8 365 7 2555 171.91 695.37 0.0672 

BC4 406 6 2436 179.11 715.74 0.0735 

BC15 356 9 3204 184.75 823.42 0.0576 

BC4 420 10 4200 212.22 912.41 0.0505 

 

Table 3 summarizes the best biclusters for Human B-cell data after 1000 generations. The largest sized bicluster is found 

at MSR=856.93, with coherence index CI being minimal and indicating the goodness of the discovered partitions. The 
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minimum value of CI is 0.0923 with a corresponding size of 9275 being the best in the table. As mentioned earlier, a low 

mean squared residue indicates a high coherence of the discovered biclusters. 

 

Table 3. Extracted biclusters for human B-cell lymphoma data 

Bicluster Genes Conditions Volume MSR Row Variance CI 

BC1 295 25 7375 756.45 2272.20 0.1025 

BC5 245 33 8085 782.67 2129.33 0.0968 

BC6 302 28 8456 810.20 2321.52 0.0958 

BC14 273 32 8736 825.11 2385.19 0.0944 

BC9 265 35 9275 856.93 2479.76 0.0923 

 

Figure 7 depicts the gene expression profile of the largest bicluster, corresponding to MSR=212.22. The gene expression 

values in the range 150 to 350 indicate the highly dense profiles of the co regulated genes having little or no fluctuations 

under the selected conditions of the bicluster. It has the highest row variance is 912.41 whereas the MSR is 212.22. In 

terms of fitness, this is the most “interesting” bicluster which has largest volume 4200 with the lowest MSR. Moreover, 

MNM tries to find highly row-variant biclusters instead of trivial biclusters. 

 

 
Figure 7: Gene expression profile of the largest bicluster on yeast cell cycle data 

 

Figure 8 depicts the gene expression profile of the largest bicluster, corresponding to MSR=856.93. It has the highest row 

variance of 2479.76, whereas the MSR is 856.93. In terms of fitness value 856.93, this is the most “interesting” bicluster 

which has the largest volume 9275 with the lowest MSR. The gene expression values in the range -100 to 100 indicate 

the highly dense profiles of the co regulated genes having little or no fluctuations under the selected conditions of the 

bicluster. However, there also exist a few genes having large expression values. Perhaps, this is because of the presence 

of a large number of missing values (12.3%) that are replaced by random numbers between -800 and 800, some of which 

remain in the biclusters without violating the homogeneity restriction. Sometimes this can also occur when a few genes 
have large variation in their expression values get included while continuing to satisfy the homogeneity constraint of the 

bicluster. 

 

 
Figure 8: Gene expression profile of the largest bicluster on human B-cell lymphoma data 



How to cite: Anil Kumar R J, et, al. Modified Nelder-Mead Method in Microarray Data using Bi-Clustering. Adv Consum Res. 

2025;2(4):4385–4399. 

Advances in Consumer Research                            4395 

Comparative Analysis Based on MSR 

The Table 4 depicts the results of the proposed method that is compared with the well-known existing methods namely 

FLOC [39], CC[40], SEBI [41], SMOB [42] and PCOBA [43] on yeast cell cycle expression dataset. The high value of 

MSR shows that the bicluster is weakly coherent while a low value MSR indicates that it is highly coherent [40]. FLOC 

and PCOBA often failed to find a homogenous block structure that uses a probabilistic approach to find biclusters. 

Similarly, CC algorithm gives a limited size of biclusters for large MSR. FLOC is able to locate large biclusters for 

minimum MSR compared with CC. However, extracted bicluster is not significant. SEBI average volume is 209.92 for 

MSR of 205.18. The bicluster found by SMOB is interesting; however, this is extract very small size of bicluster average 

MSR of 206.17. Next NM method returns the largest bicluster, nevertheless average MSR of NM is larger than all the 

other methods. In the case of MNM, average MSR is better than that of all other algorithms. Even so average volume is 

far better than that of SEBI and SMOB algorithm. Although FLOC shows better residue scores than CC, SEBI, SMOB, 
PCOBA and NM did, they were not superior to MNM. 

 

Table 4: Comparative analysis on yeast cell cycle data 

Method Average 

MSR 

Average 

volume 

Average no. 

of genes 

Average no. 

of conditions 

FLOC  187.44 1825.78 195.00 12.20 

CC  204.29 1576.98 167.00 12.00 

SEBI  205.18 209.92 13.61 15.25 

SMOB  206.17 453.48 27.28 15.46 

PCOBA  219.15 1321.30 92.40 14.30 

NM 234.25 2876.36 312.11 7.30 

MNM 180.56 2903.32 307.67 8.04 

 

Table 5 gives performance comparison of MNM for Human B-cell Lymphoma dataset with that of CC, SEBI and the 

algorithm SMOB. In this dataset the average number of MSR and average volume of the biclusters obtained are better 

than the other algorithms. Average number of conditions is greater than CC and NM. However, CC algorithm is capable 

of finding biclusters characterized by a higher volume with minimum MSR than the ones found by SEBI and SMOB. In 

the case of MNM algorithm, average number of genes is better than all the other methods. Therefore, the proposed MNM 

method generates good quality of biclusters with comparatively smaller residue values. It frequently gives significant 

improvements in the first few iterations and produces quite satisfactory results. 
 

Table 5: Comparative analysis on human B-cell lymphoma data 

Method Average 

MSR 

Average 

volume 

Average no. 

of genes 

Average no. 

of conditions 

CC  850.04 4595.98 269.22 24.5 

SEBI  1028.84 615.84 14.07 43.57 

SMOB  1019.16 709.13 11.60 78.47 

NM 912.21 7918.28 256.41 28.50 

MNM 832.09 8226.55 284.20 30.11 

 

Statistical Relevance 

With the intention of evaluating the statistical relevance of MNM algorithm, the results of the proposed method are 

compared with CC, ISA, Bimax, OPSM and BiMine on yeast cell cycle expression data from [44] by using web-tool of 

FuncAssociate (Roth lab 2008). The FuncAssociate computes the adjusted significance scores for each biclusters. In fact, 

the adjusted significance scores assess genes in each bicluster by computing adjusted p-values, which indicates how well 

they match with the different GO categories. Indeed the biclusters that have an adjust p-value lower than the 5% are 

considered as overrepresented. This means that majority of genes of a bicluster have common biological characteristics. 

Figure 9 represents the different values of significant scores p-value for each algorithm over the percentage of total 
extracted biclusters. Analysis shows that the 100% of the tested biclusters under BiMine, OPSM, Bimax and MNM have 

p-value 5% and 1%. Finally, 65% of extracted biclusters with MNM have p-value = 0.001%, while those of NM, BiMine, 

OPSM, Bimax, ISA and CC have 47%, 51%, 22%, 64%, 32%, 10% .Note that MNM performs well for all p-values 

compared to other techniques. Also, MNM performs well for all cases of p-value (p-value = 5%, p-value = 1%, p-value 

= 0.5%, p-value = 0.1% and p-value = 0.001%). 
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Figure 9 Proportions of biclusters significantly enriched by GO annotations on Yeast cell cycle data 

 

Biological Annotation for Yeast Cell Cycle Using GO Term Finder Toolbox 

GO Term Finder is a tool available in the Saccharomyces Genome Database (SGD), in an attempt to identify the biological 

annotations for the biclusters (Stanford University 2004). It is designed to search for the significant shared GO terms of 

the groups of genes and provides users with the means to identify the characteristics that the genes may have in common. 

Table 6 lists the significant shared GO terms or parent of GO terms used to describe the set of genes in each bicluster for 

the process, function and component ontologies. For example, to the bicluster BC2, the genes are mainly involved in 
translation process, structural constituent of ribosome activity and cytosolic ribosome component. The tuple (n=69, 

p=2.26×10-72) represents that out of 155 genes in bicluster BC2, 69 genes belong to in cytoplasmic translation process, 

and the statistical significance is given by the p-value of p=2.26×10-72. Next, the tuple (n=68, p=7.82×10-62) represents 

that out of 155 genes in bicluster BC2, 68 genes belong to structural constituent of ribosome activity function, and the 

statistical significance is given by the p- value of p=7.82×10-62. Finally, the genes 69 out of 155 belong to component of 

cytosolic ribosome and the corresponding p-value is p=3.73×10-72. 

 

Table 6: Significant GO terms of yeast cell cycle data 

Process Function Component 

Cytoplasmic translation ( n=69, 

p=2.26×10-72) 

Structural constituent of ribosome 

(n=68, p=7.82×10-62) 

Cytosolic ribosome (n=69, 

p=3.73×10-72) 

Ribosome biogenesis 

( n=71, p=1.82×10-45) 

Structural molecule 

(n=68, p=5.85×10-48) 

Cytosolic part (n=69, 

p=3.93×10-62) 

Cellular metabolic process 

( n=144, p=1.41×10-24) 

RNA binding 

( n=46, p=9.66×10-8) 

Organelle part 

(n=117, p=4.85×10-21) 

 
Figure 10, depicts the significant GO terms or parents of GO terms for a set of 20 genes along with their p-values, with 

the significance being indicated in terms of the different colors displayed. It shows the branching of a generalized 

molecular function into sub-functions like structural molecule activity and protein tag etc., which are then clustered gene-

wise to produce the final result. Moreover out of 20 genes, the 9 genes (RPS21A, RPL40B, RPL8B, RPL15A, RPS0B, 

RPL22A, RPL10, RPS31, RPL37A) are involved in structural constituent of ribosome. Further the corresponding p-value 

is very small (p= 6.98×10-08) which shows that there is very less probability to obtain the gene cluster in random. Those 

result means that the proposed MNM biclustering approach can find biologically meaningful biclusters. 
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Figure 10 Gene Ontology biological functions of yeast cell cycle data (20 genes) 

 

SUMMARY 

The Modified Nelder-Mead algorithm for biclustering 

microarray gene expression data is proposed to 

overcome the poor convergence problem of NM 

method. It focuses on finding coherent biclusters with 

lower MSR and higher row variance. In Nelder-Mead 

method the median is measured instead of mean. The 

median provides much better estimates in place of mean. 

Before shrinking operation the differential evolution is 
applied to obtain global minimal solution. A qualitative 

measure of the formed biclusters with a comparative 

assessment of results are provided on two benchmark 

gene expression datasets to demonstrate the 

effectiveness of the proposed method. Biological 

validation of the selected genes within the biclusters is 

provided by publicly available GO consortium. The 

patterns present a significant biological relevance in 

terms of related biological processes, components and 

molecular functions in a species-independent manner. 

In conclusion, it is found that the Modified Nelder-Mead 
approach gives a better result over the conventional 

Nelder-Mead method and existing biclustering 

algorithms. 
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