Enhancing employee well-being through Digital HRM: Investigating 'Work-Life Balance' as a Mediator in the IT Sector

¹Sini V T, ²Shibin E, ³Sanitha T P, ⁴Suhaila T K and ⁵Dr Divya M

¹Research scholar, Research and PG Department of Commerce, MES Keveeyam college, valanchery Malappuram, affiliated to University of Calicut, Kerala, India

Email: sini000variyath@gmail.com

²Research scholar, Research and PG Department of Commerce, MES Keveeyam college, valanchery Malappuram, affiliated to University of Calicut, Kerala, India

Email: shibinvasudevanep@gmail.com

³Research scholar, Research and PG Department of Commerce, MES Keveeyam college, valanchery Malappuram, affiliated to University of Calicut, Kerala, India

Email: sanitha752kpz@gmail.com

⁴Research scholar, Research and PG Department of Commerce, MES Keveeyam college, valanchery Malappuram, affiliated to University of Calicut, Kerala, India

Email: suhailatk98@gmail.com

⁵Research Guide, Research and PG Department of Commerce, MES Keveeyam college, valanchery Malappuram, affiliated to University of Calicut, Kerala, India

Email: divyadcms@gmail.com

Received: 30/09/2025 Revised: 07/10/2025 Accepted: 22/10/2025 Published: 28/10/2025

ABSTRACT

The rapid digital transformation in 'Human resource management (HRM)'has reshaped workplace dynamics, influencing employee experiences and overall well-being. This study examines the relationship between Digital HRM practices and employee well-being in the IT sector, with 'Work-Life Balance' as a mediating variable. Data were collected from 235 IT professionals using a structured questionnaire and analyzed through Partial Least Squares Structural Equation Modeling (PLS-SEM). The results indicate that Digital HRM practices have a significant positive impact on employee well-being, with 'Work-Life Balance' acting as a partial mediator. These findings highlight the critical role of digital HR interventions in enhancing well-being while emphasizing the need for strategies that ensure 'Work-Life Balance' in technology-driven workplaces. The study contributes to HRM literature by integrating the Technology Acceptance Model (TAM) in the digital HR context and offers practical insights for HR practitioners aiming to leverage digital tools for employee-centric outcomes.

Keywords: Digital HRM, Employee Well-being, Work-Life Balance, IT Professionals, Partial Least Squares Structural Equation Modeling (PLS-SEM), Technology Acceptance Model (TAM).

© 2025 by the authors; licensee Advances in Consumer Research. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BYNC.ND) license(http://creativecommons.org/licenses/by/4.0/).

INTRODUCTION

The digital transformation of 'Human resource management (HRM)'has significantly altered how organizations manage their workforce, with Digital HRM (DHRM) emerging as a critical enabler of employee wellbeing in the contemporary workplace (Bondarouk & Ruël, 2013). The implementation of digital HR practices, including cloud-based HR solutions, artificial intelligence (AI)-driven talent management, and mobile HR applications, has streamlined traditional HR functions while simultaneously influencing employees' work experiences (Bondarouk et al., 2017). Given the increasing penetration of technology in HR processes, it is essential to explore how DHRM impacts employee wellbeing, particularly in the information technology (IT)

sector, where digital integration is more advanced (Theres & Strohmeier, 2024).

employee well-being is a multifaceted construct that encompasses psychological, social, and occupational dimensions, including job satisfaction, stress management, and overall quality of work life (Jain et al., 2009). The IT industry, characterized by high job demands, long working hours, and a constantly evolving technological landscape, presents unique challenges for maintaining employee well-being (Holman, 2002). Research indicates that excessive workload and work pressure in the IT sector lead to burnout and job dissatisfaction, making employee well-being a crucial

concern for organizations(Guest, 2002) .Digital HRM practices, such as remote working policies, self-service HR portals, and AI-enabled employee assistance programs, have the potential to alleviate these challenges by enhancing flexibility, autonomy, and engagement (Theres & Strohmeier, 2024).

'Work-Life Balance' is a key determinant of employee well-being, Balance between professional responsibilities and personal interests is essential for maintaining a healthy lifestyle (Alameddine et al., 2023). The IT sector has witnessed significant changes in 'Work-Life Balance' dynamics due to digitalization, as flexible work arrangements and remote work opportunities have increased (Holman, 2002). While these digital innovations offer employees greater control over their work schedules, they also raise concerns about work-life integration, with employees struggling to disconnect from work in a digitally connected environment (Alameddine et al., 2023). DHRM can play a crucial role in mitigating these negative effects by implementing strategies that ensure a structured boundary between work and personal life (Guest, 2002).

Despite the positive implications of digital HR practices, the relationship between DHRM and employee wellbeing is complex and requires further investigation. Studies have suggested that while digital HR interventions facilitate work-life balance, their effectiveness depends on factors such as organizational culture, managerial support, and employee digital literacy (Jain et al., 2009). Moreover, the mediating role of 'Work-Life Balance' in the relationship between DHRM and employee well-being has not been extensively explored, especially in the context of the IT sector (Aboobaker et al., 2019). By examining this mediating mechanism, organizations can develop targeted strategies to optimize employee well-being through digital HR innovations. In addition to improving well-being, effective DHRM implementation can enhance job performance, employee retention, and organizational commitment (Bondarouk et al., 2017). Organizations that prioritize digital HR solutions to improve 'Work-Life Balance' are more likely to attract and retain top talent in the competitive IT industry (Kobayashi et al., 2018). Furthermore, studies suggest that digital HR tools, such as automated feedback systems and digital coaching platforms, can foster a culture of continuous learning and development, further enhancing employee satisfaction and engagement (Erwina et al., 2024)

Given the growing reliance on digital technologies in HRM, this study aims to investigate the impact of DHRM on employee well-being, with 'Work-Life Balance' as a mediating variable in the IT sector. Understanding this relationship will provide valuable insights for HR practitioners, policymakers, and organizational leaders seeking to optimize HR strategies in the digital era. By addressing this research gap, this study contributes to the literature on digital HRM, work- life balance, and employee well-being, offering practical implications for fostering a healthier and more sustainable work environment in the IT industry.

REVIEW OF LITERATURE

Theoretical framework

The Technology Acceptance Model (TAM) proposed by (Davis, 1989) serves as a strong theoretical foundation for understanding the role of Digital HRM Practices in influencing employee well-being, with 'Work-Life Balance' as a Mediator among IT professionals in India. The TAM model explains how individuals adopt and use technology based on two primary perceptions: Perceived Usefulness (PU) and Perceived Ease of Use (PEOU), both of which shape an individual's attitude toward technology adoption and eventual behavioral intention to use it.

The TAM model supports the idea that the adoption of Digital HRM tools leads to increased job satisfaction, lower job-related stress, and improved overall employee well-being (Venkatesh & Davis, 2000). The digital transformation of HR processes ensures that employees feel valued, engaged, and supported by their organizations, which directly influences their mental and emotional well-being (Bakker & Demerouti, 2007). The mediating role of 'Work-Life Balance'can also be explained using TAM, as employees who perceive HR digitalization as useful and easy to use are more likely to achieve better work-life balance, leading to higher levels of job satisfaction and well-being (Demerouti, 2023). By minimizing excessive workload and providing digital solutions for work-life integration, Digital HRM helps reduce employee burnout, thereby promoting overall well-being among IT professionals in India. Thus, this theory acts as the basis for the conceptual framework and hypotheses developed in the study.

2.2 Digital HRM and Employee well being

Digital HRM (Human Resource Management) practices revolutionized workplace have management, significantly influencing employee well-being, particularly in the IT industry. One of the key ways digital HRM enhances employee well-being is by streamlining HR processes, reducing administrative burdens, and fostering a more efficient and engaging work environment (Theres & Strohmeier, 2024). Recent research suggests that these digital HR practices positively influence employee well-being by promoting flexibility, reducing administrative burdens, and fostering a more engaging work environment, One of the key aspects of DHRM that contributes to employee wellbeing is the increased accessibility of HR services (Bajraliu & Oorraj, 2023). Digital platforms enable employees to access HR support, training, and career development resources at their convenience, reducing stress associated with administrative delays and uncertainties(Bailey & Kurland, 2002).

Furthermore digital HRM fosters a culture of continuous learning and professional growth, which plays a significant role in employee well-being. Elearning platforms and AI-driven skill development programs allow IT professionals to upskill and stay relevant in a rapidly evolving industry, reducing job insecurity and enhancing career satisfaction (Bondarouk & Brewster, 2016). When employees feel valued and supported in their career development, they tend to

exhibit higher levels of well-being and organizational commitment (Stone et al., 2015). Existing literature provides substantial evidence supporting the hypothesis that Digital HRM practices positively impact employee well-being in the IT sector. By enhancing accessibility, flexibility, learning opportunities, and overall job satisfaction, digital HRM plays a crucial role in promoting a healthier and more sustainable work environment. On the basis of these evidence one of the hypotheses of the study is developed.

+ H1: Digital HRM Practices have a significant positive impact on employee well-being in the IT industry

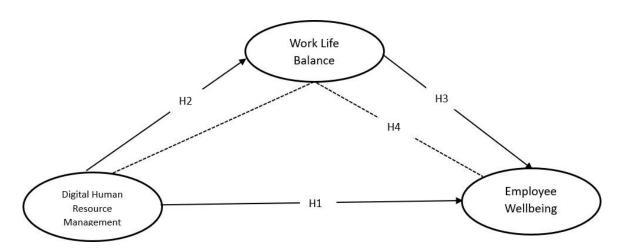
2.3 Mediating Role of 'Work-Life Balance'

'Human resource management (HRM)'practices play a role in shaping employees' 'Work-Life Balance'(WLB), as they determine policies related to flexibility, workload distribution, and employee support systems (Kellher, 2019). Organizations that implement HRM strategies such as flexible work arrangements, remote work policies, and supportive leadership tend to experience higher levels of employee well-being and satisfaction (Guest, 2002) .By fostering a culture that prioritizes both professional and personal well-being, HRM practices directly impact how employees manage their work responsibilities alongside personal life commitments(Erwina et al., 2024). Digital HRM (DHRM) practices, such as flexible work arrangements, AI-driven task automation, and virtual collaboration tools, have significantly improved 'Work-Life Balance'in the IT sector(Bondarouk & Brewster, 2016). By enabling remote work, digital HRM reduces commuting time and allows employees to better manage personal and professional responsibilities, thereby enhancing overall well-being (Bailey & Kurland, 2002). Additionally, digital HR solutions streamline administrative processes performance evaluations, reducing workplace stress and increasing job satisfaction (Alameddine al., 2023). Moreover, **DHRM** tools facilitate better communication and real-time feedback, helping employees align work expectations with personal goals, thus reducing burnout (Bondarouk & Ruël, 2013) Overall, existing literature clearly reveals that well-structured DHRM practices contribute positively to 'Work-Life Balance' in the IT industry by promoting flexibility, reducing stress, and enabling career growth while maintaining personal well-being. On the basis of these evidences the following hypotheses are developed

- + H2: Digital HRM Practices have a significant positive relationship with 'Work-Life Balance'among IT employees.
- H3: 'Work-Life Balance' has a significant positive effect on employee well-being in the IT sector.

The rapid digital transformation in 'Human resource management (HRM)'has significantly reshaped

workplace dynamics, particularly in the IT sector, influencing employee well-being and 'Work-Life Balance' (Bajraliu & Qorraj, 2023). Digital HRM practices, such as AI-driven recruitment, automated performance management, and cloud-based HR solutions, have been linked to enhanced employee experience, flexibility, and engagement (Bondarouk et al., 2017). However, the effectiveness of these digital interventions in improving employee well-being is often contingent upon their impact on Balance'(WLB), which serves as a critical mediating factor (Huo et al., 2022).'Work-Life Balance' plays a crucial role in translating the benefits of digital HRM into positive employee well-being outcomes (Wang et al., 2021). For instance, digital HRM tools that enable remote work, flexible work schedules, and seamless communication can reduce work-life conflicts, thereby mitigating stress and enhancing job satisfaction (Kossek et al., 2014). When employees experience greater control over their work routines through digital HRM, their ability to balance professional and personal responsibilities improves, leading to reduced burnout and higher psychological well-being (Grawitch, 2010). Conversely, the improper implementation of digital HRM can blur the boundaries between work and personal life, resulting in work intensification and negative spillover effects, which ultimately diminish employee well-being (Duxbury & Halinski, 2014). Research suggests that digital HRM strategies must be aligned with employee well-being initiatives, ensuring that technological advancements facilitate not hinder 'Work-Life Balance' (Bailey & Kurland, 2002) In this context, WLB acts as a bridge, translating digital HRM advantages into sustainable well-being outcomes by reducing workplace stressors and fostering a healthier environment (Kellher, 2019). Furthermore, empirical studies support the mediating role of WLB in HRM models, demonstrating that organizations that invest in digital HR solutions while simultaneously promoting supportive WLB policies witness improved job satisfaction, organizational commitment, and reduced turnover intentions (Prasad & Satyaprasad, 2023). The integration of digital HRM with wellstructured 'Work-Life Balance' initiatives ensures that employees derive the intended benefits of technology without experiencing work-life conflicts, thereby enhancing their overall well-being (Nijp et al., 2012).


Thus, existing literature strongly supports the hypothesis that 'Work-Life Balance' mediates the relationship between digital HRM practices and employee well-being. Organizations that strategically implement digital HRM alongside robust WLB policies can achieve a workforce that is both technologically empowered and psychologically resilient. On the basis of these evidence last hypothesis of the study is developed ie

H4: Mediating Role of 'Work-Life Balance' in between 'Digital HRM practice' and employee well-being.

RESEARCH METHODS

3.1 Research Design

This study employs a cross-sectional research method with a cross-sectional survey design to investigate the impact of Digital HRM practices on employee well-being, with 'Work-Life Balance' as a mediating variable in the IT sector. The target population for this study consists of IT professionals, as they are significantly affected by digital HRM practices. Due to the absence of official records a purposive sampling technique is used to ensure the inclusion of employees familiar with digital HRM tools and policies (Etikan et al., 2015). A survey was conducted using an electronic means, followed by a personal interview with the respondents. All potential participants were evaluated based on four eligibility requirements: involvement in IT sector, beneficiary of Digital HRM practice, employing in an organisation for more than two years, and willingness to take part in the study. IT professionals who fulfilled these criteria were comprised in the survey. The research crew collected data from 235 IT professionals, exceeding the minimum sample size of 200 required for partial least square structural equation modelling analysis (Boomsma & Hoogland, 2001).

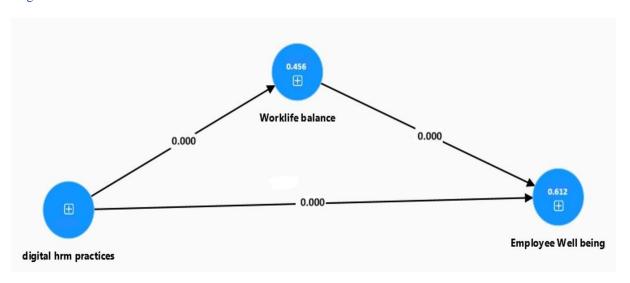
Source: Created by Authors

3.2 Survey instrument

This study employs a quantitative research approach with a cross-sectional survey design to investigate the

impact of Digital HRM practices on employee well-being, with 'Work-Life Balance' as a mediating variable in the IT sector. The target population consists of IT professionals from various organizations, selected using a purposive sampling technique. The Digital HRM Practices variable is measured using the scale suggested by Strohmeier, S., covering dimensions such as e-recruitment, digital performance management, AI-driven HR processes, and HR analytics (Strohmeier, 2020). 'Work- Life Balance' is assessed using the scale developed by (Manupadu & Prasad, 2017), which evaluates flexibility, work-life conflict, and work autonomy. employee well-being is measured using

Black Dog Institute scale (Black dog institute, 2014), examines psychological, emotional, and workplace well-being. Data is collected via an online survey distributed through professional networks and analyzed using Partial Least Squares Structural Equation Modeling (PLS- SEM) to test hypothesized relationships. Reliability and validity checks include Cronbach's Alpha (>0.7), Composite Reliability (CR), Variance Extracted (AVE). and Average Bootstrapping method in SmartPLS is used to test the mediating effect of Work-Life Balance. Ethical considerations strictly followed. ensuring are confidentiality, voluntary participation, and informed consent. This methodology enables an empirical investigation into the role of Digital HRM in enhancing employee well-being through 'Work-Life Balance'in the IT sector.


DATA ANALYSIS AND RESULTS

Study analysis has done by employing the "Statistical Package for the Social Sciences" (SPSS) and PLS Sem statistical model. The model examination has done using PLS Sem through which examines how much employee wellbeing depends upon the implementation of digital HRM practices along with work life balance. Finding a statistically significant theoretical model with both practical and intellectual meaning is the primary goal of employing SEM (Gafoor & et al, 2024). Analysis of confirmatory factors is used to validate the measurement model.

Convergent	Discriminant validity									
Validity							Hetero	trait-mor	notrait	
Construct	Fornell–Larcker criterion rat						ratio (I	ratio (HTMT)		
	α	CR	AVE	EC	WLB	DHRM	EC	WLB	DHRM	
EW	0.807	0.821	0.563	0.750						

	WLB	0.933	0.936	0.688	0.004	0.830		0.215			
	Digital	0.608	0.928	0.504	0.169	0.313	0.710	0.233	0.344		
	HRM										
	Note(s): Employee Wellbeing (EW), Work Life Balance (WLB), and Digital Human										
	Resource Management (DHRM). Diagonal values are indicated using italics. The										
	constructs are clearly different from one another if discriminant validity can assure if the										
	values in diagonal columns are greater than the values in columns under diagonal direction.										
	Significance level could be achieved if the alpha (α) value greater than 0.7, 'Composite										
Table 1.	reliability' greater than 0.7, and 'Average Variance Extracted' (AVE) is greater than 0.5.										
Construct	Source of data: Authors' own creation										
reliability											
and											
validity											

The validity and reliability of constructs were analysed and assured before going to the confirmation of significance and appropriateness of path coefficient. The observable items under each construct are remained identical through the tests of validity and reliability and Cronbach alpha value for each constructs shows as higher than the threshold limit (citation for hair et al) which is 0.7, so it is confirms the construct reliability. Likewise, "Composite Reliability (CR)" and "Average Variance Extracted (AVE)" are also exceeds the threshold limit of 0.7 and 0.5 respectively. So, the 'convergent validity' is also guaranteed under the structural model.

Under PLS Sem, two criteria can be analysed to confirm the 'convergent' and 'discriminant validity' of constructs, they are "Fornell–Larcker criterion" and "Heterotrait-monotrait ratio (HTMT)". Table 1, shows square root of the "Average Variance Extracted (AVE)" for all constructs is higher than its association with remaining constructs as per Fornell–Larcker criterion, and under "Heterotrait-Monotrait (HTMT)" matrix the values are shown as <0.85. In summary, the measurement model supports the validity of the model's constructs by confirming their 'reliability', 'convergent validity', and 'discriminant validity'.

Structural model was assessed and hypothesis were tested through bootstrapping procedure with 5000 replications. Later, the structural model was analysed to measure the significance of path coefficiency. Threshold values of 0.25, 0.50, and 0.75 are used to measure the predictive accuracy of R2, predictive accuracy of low level, moderate level, and high levels accuracy (Hair & et al, 2012). From the analysis of path coefficient shows DHRM significantly posits a positive effect on 'employee well-being' (EW), which is proclaimed by 'path coefficient' (β = 0.502) and 'p-value' of 0.000 and a 't-value' of 4.453. Likewise, effect of DHRM on WLB is seen as significant and has positive relationship with 'path coefficient' (β = 0.281), 't-value' of 4.520 and a 'p-value' of 0.000. The third path denotes the relationship between WLB and EW, which is also significant by the path coefficient (β = 0.325), and has high 't-value' of 5.123 and a 'p-value' of 0.000.

eath of the path everificient (p = 0.525), and has high t value of 5.125 and a p value of 0.00									
Hypothesis	Path	Original	Standard	T	P	Outcome			
		sample	deviation	value	values				
H1	DHRM	0.502	0.099	4.453	0.000	Significant			
	\rightarrow EW								
H2	DHRM	0.281	0.059	4.520	0.000	Significant			
	\rightarrow WLB								
Н3	$WLB \rightarrow$	0.325	0.054	5.123	0.000	Significant			
	EW						Table 2.		
Source(s): Created by authors									

From path coefficient analysis, it shows the predictability of EW with its all-exogenous paths and it has predictive accuracy of 0.563. Since DHRM has significant direct effect on EW (b = 0.091, t = 3.735, p = 0.000) H1 requires to accept. Which means, DHRM has significant influence on EW. Remaining hypotheses H2 and H3, requisites to accept due to the relation of DHRM on WLB and WLB on EW are significant with 'P value' of 0.000. The role of WLB as a mediator between DHRM & EW was analysed and H4 accepted. Because as per the analysis outcome DHRM shows significant indirect effect on EW through WLB (b = 0.593, t = 5.815, p = 0.000). In conclusion, there is partial mediation on ground of both direct and indirect effects are significant.

Hypothesis	Effect	Hypothesised path	Beta	T value	P-values	Results	
	Total	$DHRM \rightarrow EW$	0.502	4.453	0.000	Significant	
	Effect						
	Direct	$DHRM \rightarrow EW$	0.091	3.735	0.000	Significant	
	Effect						
H4	Indirect	DHRM→ WLB →	0.593	5.815	0.000	Significant	
	Effect	EW					Table 3.
							Mediation
							analysis

DISCUSSIONS

Results of the study leads to the following conclusions that 'Work-Life Balance' (WLB) serves as a partial mediator in the link between Digital HRM practices and employee well-being among IT professionals. The direct connection from Digital HRM to employee well-being remains significant, demonstrating that Digital HRM practices independently enhance employee well-being. Nonetheless, the indirect route via 'Work-Life Balance'is also significant, suggesting that Digital HRM practices improve Work-Life Balance, which subsequently boosts employee well-being. The explained variance (R2) in employee wellbeing implies that a considerable portion of the outcome variable is affected by both direct and mediated effects. The Variance Accounted For (VAF) value, which assesses the proportion of the indirect effect relative to the total effect, falls within the partial mediation range, further supporting the notion that 'Work-Life Balance'acts as a complementary factor rather than the sole means through which Digital HRM impacts well-being. Moreover, the path coefficients for both direct and indirect effects are positive and statistically significant, as verified by bootstrap confidence intervals and t- values exceeding the threshold. These results indicate that while Digital HRM directly promotes employee well-being, its effect is magnified when it concurrently enhances Work-Life Balance. In summary, the partial mediation effect underscores that adopting digital HRM practices boosts employee well-being not only directly but also through improved work-life balance, emphasizing the importance of HR policies that integrate technology-driven efficiency with employee- focused well-being initiatives.

Implications of the Study

The findings of this study have both theoretical and practical implications. Theoretically, the study contributes to the literature on Digital HRM and employee well-being by establishing 'Work-Life Balance'as a partial mediator, reinforcing the Technology Acceptance Model (TAM) (Davis, 1989) in the HRM context. It highlights how employees' perceived ease of use and usefulness of digital HR tools

can enhance well-being, provided that 'Work-Life Balance'is maintained. This expands frameworks by integrating HR digitalization with employee-centric outcomes, offering a foundation for future research on technology-driven HR practices and their psychological impact. From a practical perspective, the study underscores the importance of organizations adopting Digital HRM practices not only to enhance operational efficiency but also to improve employee well-being. HR professionals should focus on designing digital HR systems that promote flexibility, reduce work-related stress, and support a healthy work-life balance. Employers in the IT sector should implement policies that complement digital HR initiatives with well-being programs, such as flexible arrangements, mental health support, and work-life integration strategies. Additionally, managers must be trained to use digital HR tools effectively while ensuring that these technologies do not blur work-life boundaries. Future workplace strategies should leverage HR digitalization as a tool for employee well-being rather than merely a cost-cutting mechanism, ensuring sustainable workforce engagement and productivity.

CONCLUSIONS

The findings of this study confirm that Digital HRM practices positively influence employee well-being in the IT sector, with 'Work-Life Balance' playing a partial mediating role in this relationship. The results suggest that while digital HR tools enhance work efficiency, streamline HR processes, and provide employees with greater flexibility, their full impact on well-being is strengthened when 'Work-Life Balance'is effectively managed. The partial mediation indicates that other factors, such as job autonomy, organizational support, and workplace culture, may also contribute to employee well-being beyond digital HRM and work-life balance. These insights highlight the strategic importance of integrating digital HRM solutions with 'Work-Life Balance'initiatives to foster a more supportive and healthy work environment for IT professionals. Future research can explore additional mediating moderating variables and examine the long-term impact

of digital HR transformation on employee well-being across diverse industries and organizational contexts.

REFERENCES

- Aboobaker, N., Edward, M., & K.A., Z. (2019). Workplace spirituality, employee wellbeing and intention to stay: A multi-group analysis of teachers' career choice. International Journal of Educational Management, 33(1), 28–44. https://doi.org/10.1108/IJEM-02-2018-0049
- Alameddine, M., Al-Yateem, N., Bou-Karroum, K., Hijazi, H., Al Marzouqi, A., & Al-Adawi, S. (2023). Measurement of Work-Life Balance: A Scoping Review with a Focus on the Health Sector. Journal of Nursing Management, 2023, 1–10. https://doi.org/10.1155/2023/3666224
- 3. Bailey, D. E., & Kurland, N. B. (2002). A review of telework research: Findings, new directions, and lessons for the study of modern work. Journal of Organizational Behavior, 23(4), 383–400. https://doi.org/10.1002/job.144
- Bajraliu, A., & Qorraj, G. (2023). Digital Transformation's Impact on Sustainable HR Management: Comparative Study of 'Work-Life Balance'and Skill Development in Public versus Private Sectors of a Developing Country. Public Policy and Administration, 22(3), 358–369. https://doi.org/10.5755/j01.ppaa.22.3.35071
- Bakker, A. B., & Demerouti, E. (2007). The Job Demands-Resources model: State of the art. Journal of Managerial Psychology, 22(3), 309–328. https://doi.org/10.1108/02683940710733115
- Bondarouk, T., & Brewster, C. (2016). Conceptualising the future of HRM and technology research. The International Journal of Human Resource Management, 27(21), 2652–2671. https://doi.org/10.1080/09585192.2016.1232296
- Bondarouk, T., Parry, E., & Furtmueller, E. (2017). Electronic HRM: Four decades of research on adoption and consequences. The International Journal of Human Resource Management, 28(1), 98–131. https://doi.org/10.1080/09585192.2016.1245672
- 8. Bondarouk, T., & Ruël, H. (2013). The strategic value of e-HRM: Results from an exploratory study in a governmental organization. The International Journal of Human Resource Management, 24(2), 391–414. https://doi.org/10.1080/09585192.2012.675142
- 9. Boomsma, A., & Hoogland, J. J. (2001). The Robustness of LISREL Modeling Revisited.
- Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319. https://doi.org/10.2307/249008
 320.
- 11. Demerouti, E. (2023). Effective employee strategies for remote working: An online self-training intervention. Journal of Vocational Behavior, 142, 103857. https://doi.org/10.1016/j.jvb.2023.103857
- 12. Duxbury, L., & Halinski, M. (2014). When more is less: An examination of the relationship between hours in telework and role overload. WORK: A

- Journal of Prevention, Assessment & Rehabilitation, 48(1), 91–103. https://doi.org/10.3233/WOR-141858
- 13. Erwina, E., Nurjannah, N., Nurimansja, R. A., & Amri, A. (2024). The Role Of 'Work-Life Balance'And Human Resource Development On Employee Performance. Jurnal Ekonomi Pembangunan STIE Muhammadiyah Palopo, 10(1), 226. https://doi.org/10.35906/jep.v10i1.1994
- 14. Etikan, I., Musa, S. A., & Alkassim, R. S. (2015). Comparison of Convenience Sampling and Purposive Sampling.
- 15. Guest, D. (2002). Human Resource Management, Corporate Performance and Employee Wellbeing: Building the Worker into HRM. Journal of Industrial Relations, 44(3), 335–358. https://doi.org/10.1111/1472-9296.00053
- 16. Holman, D. (2002). Employee wellbeing in call centres. Human Resource Management Journal, 12(4), 35–50. https://doi.org/10.1111/j.1748-8583.2002.tb00076.x
- 17. Huo, M.-L., Boxall, P., & Cheung, G. W. (2022). Lean production, work intensification and employee wellbeing: Can line-manager support make a difference? Economic and Industrial Democracy, 43(1), 198–220. https://doi.org/10.1177/0143831X19890678
- 18. Jain, A. K., Giga, S. I., & Cooper, C. L. (2009). Employee wellbeing, control and organizational commitment. Leadership & Organization Development Journal, 30(3), 256–273. https://doi.org/10.1108/01437730910949535
- 19. Kobayashi, K., Eweje, G., & Tappin, D. (2018). Employee wellbeing and human sustainability: Perspectives of managers in large Japanese corporations. Business Strategy and the Environment, 27(7), 801–810. https://doi.org/10.1002/bse.2032
- 20. Manupadu, V., & Prasad, S. (2017). Development of an Extended Measure of Work-Life Balance: An Empirical Study with Reference to IT Industry. AIMS International Journal of Management, 11(3), 187. https://doi.org/10.26573/2017.11.3.3
- Nijp, H. H., Beckers, D. G., Geurts, S. A., Tucker, P., & Kompier, M. A. (2012). Systematic review on the association between employee worktime control and work–non-work balance, health and well-being, and job-related outcomes. Scandinavian Journal of Work, Environment & Health, 38(4), 299–313. https://doi.org/10.5271/sjweh.3307
- 22. Prasad, K., & Satyaprasad, V. (2023). The Relationship between Remote Working and 'Work-Life Balance'with Mediating and Moderating Effects of Social Support: An Empirical Study of Information Technology Employees. International Journal of Organizational Leadership, 0(0), 235– 253. https://doi.org/10.33844/ijol.2023.60366
- 23. Stone, D. L., Deadrick, D. L., Lukaszewski, K. M., & Johnson, R. (2015). The influence of technology on the future of human resource management. Human Resource Management Review, 25(2), 216–231. https://doi.org/10.1016/j.hrmr.2015.01.00

- 24. Strohmeier, S. (2020). Digital human resource management: A conceptual clarification. German Journal of Human Resource Management: Zeitschrift Für Personalforschung, 34(3), 345–365. https://doi.org/10.1177/2397002220921131
- 25. Theres, C., & Strohmeier, S. (2024). Consolidating the theoretical foundations of digital human resource management acceptance and use research: A meta-analytic validation of UTAUT. Management Review Quarterly, 74(4), 2683–2715. https://doi.org/10.1007/s11301-023-00367-z
- 26. Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186–204. https://doi.org/10.1287/mnsc.46.2.186.11926
- 27. Wang, B., Liu, Y., Qian, J., & Parker, S. K. (2021). Achieving Effective Remote Working During the COVID-19 Pandemic: A Work Design Perspective. Applied Psychology, 70(1), 16–59. https://doi.org/10.1111/apps.12290