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02/10/2025 Adaptive Access Control using Attention-based Actor Critic Multi-Agent Graph Hierarchical
Revised: Reinforcement Learning (AAMGHRL) enables dynamic decision making based on historical
31/10/2025 access patterns. However, optimizing AAMGHRL parameters is critical for improving
Accepted: predictive accuracy, security, and efficiency. This paper investigates the Advanced Chinese
08/11/2025 Pangolin Optimizer (ACPO) for parameter tuning and compares it with \Voyage Optimization
Published: Algorithm (VOA) and Badger Optimization Algorithm (BOA). The study evaluates each
13/11/2025 optimizer’s effectiveness in enhancing AAMGHRL performance across five key metrics:

Predictive Accuracy (PA%), Convergence Time (CT), Computational Cost (CC),
Hyperparameter Stability (HS), and Attack Detection Rate (ADR%). Experiments are
conducted on an loMT-based Electronic Health Records (EHR) dataset within a simulated fog-
cloud environment to mimic real-world healthcare access control scenarios. Results
demonstrate that ACPO consistently outperforms VOA and BOA in accuracy, learning
efficiency, and robustness, making it a highly effective choice for secure, adaptive access

control in sensitive digital infrastructures.
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INTRODUCTION:

In modern computing environments—particularly those
handling sensitive data such as Electronic Health
Records (EHR)—access control systems must be both
intelligent and adaptive to effectively respond to rapidly
evolving security threats and dynamic user behaviors.
Traditional rule-based access mechanisms, though
foundational, often fail to scale efficiently in real-time or
under adversarial conditions. To address these
limitations, reinforcement learning (RL) approaches
have been introduced, offering autonomous policy
generation and decision-making capabilities based on
environmental feedback. Among these, the Attention-
based Actor-Critic Multi-agent Graph Hierarchical
Reinforcement Learning (AAMGHRL) framework has
emerged as a robust model for adaptive access control.
It integrates multi-agent coordination, hierarchical
learning, and graph-structured attention to model
complex relationships between users, resources, and
contextual parameters. However, despite its structural
sophistication, the efficacy of AAMGHRL s
significantly influenced by the tuning of its
hyperparameters, which directly affect its convergence,
generalization, and responsiveness to anomalous
behavior. This study focuses on enhancing the parameter
optimization of AAMGHRL through the application of
three recent bio-inspired metaheuristic algorithms: the
Advanced Chinese Pangolin Optimizer (ACPO), the

Voyaging Optimization Algorithm (VOA), and the
Badger Optimization Algorithm (BOA). Each of these
optimizers offers unique search dynamics and
exploration-exploitation balances, making them suitable
candidates for high dimensional, non-linear optimization
tasks such as those posed by reinforcement learning
environments. The primary contribution of this research
is a comprehensive comparative analysis of ACPO,
VOA, and BOA in the context of AAMGHRL-based
adaptive access control. The performance of each
optimizer is benchmarked across critical security-centric
metrics, including Predictive  Accuracy (PA),
Convergence Time (CT), Computational Cost (CC),
Hyperparameter Stability (HS), and Attack Detection
Rate (ADR). Through empirical validation on a real-
world EHR dataset within a simulated fog-cloud
infrastructure, this work provides actionable insights
into the suitability and efficiency of each optimization
method for secure, adaptive decision-making in next-
generation access control systems.

Related Work

In complex distributed environments such as smart
healthcare systems and loT-driven infrastructures,
secure and scalable adaptive access control mechanisms
are essential. Multi-agent reinforcement learning
(MARL) frameworks, especially Attention-based Actor-
Critic Multi-agent Graph Hierarchical Reinforcement
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Learning (AAMGHRL), have emerged as powerful
tools for managing policy-based access control due to
their ability to model dynamic inter agent relationships
and environmental feedback [2]. Reinforcement
Learning for Adaptive Access Control Traditional
access control mechanisms are often static or context-
insensitive. Reinforcement learning (RL), particularly
actor-critic methods, enables agents to dynamically
learn optimal access policies by interacting with the
environment  [11, 19]. Incorporating attention
mechanisms and hierarchical graph structures,
AAMGHRL  models have shown significant
improvement in managing complex and heterogeneous
access control scenarios [20]. However, the performance
of such models heavily depends on the fine-tuning of
hyperparameters, network architectures, and learning
schedule necessitating robust optimization strategies.
Metaheuristic

Optimization of RL Parameters Metaheuristic
algorithms have proven highly effective for optimizing
RL models due to their capability to handle high-
dimensional, non-convex, and stochastic search spaces.
Among recent innovations, the Advanced Chinese
Pangolin Optimizer (ACPO) introduces a dual-strategy
approach combining adaptive prey detection and
exploitative attack patterns, making it effective for RL
parameter tuning [17]. Its hybridized local-global search
ability has shown promise in neural architecture
optimization and adaptive control systems [8]. The
Voyage Optimization Algorithm (VOA) is a newer
algorithm inspired by the concept of voyages and
exploratory  decision-making. It simulates the
exploration and exploitation strategies of navigators
traveling across uncertain terrains. VOA has been
applied in complex scheduling, classification, and
energy-efficient resource management tasks, proving
effective in avoiding local minima and converging
rapidly in dynamic environments [9]. Similarly, the
Badger Optimization Algorithm (BOA) mimics the
cooperative foraging and tunnel digging behavior of
badgers. BOA has been utilized in constrained
optimization problems due to its adaptive search
mechanisms and balanced convergence strategies [14].
In recent studies, BOA has been integrated with deep
learning models and RL policies to enhance
convergence speed and policy robustness [4].
Comparative Studies in Optimizer-Driven RL Tuning
Comparative analyses of optimizers in tuning multi-
agent RL  parameters remain  underexplored.
Nonetheless, initial studies indicate that the performance
of metaheuristics varies significantly with the structure
of the RL model and the domain characteristics [18].
Specifically, the effectiveness of algorithms like ACPO,
VOA, and BOA in optimizing AAMGHRL parameters
for adaptive access control is yet to be systematically
benchmarked. This research addresses this gap by
providing a comparative evaluation of ACPO, VOA, and
BOA in tuning AAMGHRL parameters for adaptive
access control in multi-agent environments, contributing
novel insights into their optimization capabilities,
convergence behaviors, and policy performance.

METHODOLOGY

AAMGHRL Model

AAMGHRL is designed for dynamic access decision
making, incorporating attention-based multi-agent
reinforcement learning with graph structures. The
system begins with data collection and preprocessing,
where past access information is passed through
Canonical-Correlation-based Fast Feature Selection
(C2F2S) to derive the required user attributes, behavior
patterns, and contextual parameters such as time of
access, location, and emergencies. The Advanced
Chinese Pangolin Optimizer (ACPO)-optimized MAC-
GHRL model is trained to make access predictions,
calculating an access score (0-1) dynamically while
adjusting permissions for emergencies without
compromising security. The model learns continuously,
incorporating new patterns to improve decision
reliability. For transparency, LIME-based
interpretability  analysis  identifies the factors
contributing to access control decisions. This context
aware, reinforcement learning-based system effectively
prevents unauthorized access, optimizes decision
making, and protects sensitive EHR data.

Optimization Techniques

The optimization of complex, nonlinear, and high
dimensional problems in reinforcement learning,
adaptive control, and intelligent systems has
increasingly relied on bio-inspired and nature-inspired
metaheuristic algorithms. Among recent developments,
the Advanced Chinese Pangolin Optimizer (ACPO),
Voyage Optimization Algorithm (VOA), and Badger
Optimization Algorithm (BOA) have emerged as
promising methods due to their unique problem-solving
paradigms and superior convergence behavior.

The Advanced Chinese Pangolin Optimizer (ACPO)
was introduced by Zhang and Zhou (2023) as an
enhancement of the original Chinese Pangolin Optimizer
(CPO), which is inspired by the hunting strategy and
movement patterns of Chinese pangolins [11]. ACPO
improves upon CPO by incorporating adaptive behavior
modeling, multi-level foraging, and chaotic dynamic
control, which collectively enhance its exploration—
exploitation balance.

The core mechanism of the Advanced Chinese Pangolin
Optimizer (ACPO) is rooted in the natural foraging
behavior of pangolins, incorporating both exploration
and exploitation strategies to enhance optimization
performance. In the exploration phase, ACPO simulates
the pangolin’s adaptive prey-searching behavior through
randomized circular foraging trajectories.  This
mechanism encourages a broad search across the
solution space, reducing the risk of premature
convergence. For exploitation, the algorithm transitions
into a deterministic mode, mimicking the pangolin’s
focused prey-tracking tactics to intensify the search
around promising regions. A key innovation in ACPO is
its adaptive parameter control, where learning factors are
dynamically tuned based on iterative feedback, thereby
modulating the search intensity as the optimization
process evolves. This adaptability has facilitated

Advances in Consumer Research

1402



How to cite: Samadhan Palkar, et, al. Optimization of AAMGHRL Parameters for Adaptive Access Control using ACPO, VOA, and
BOA: A Comparative Analysis. Advances in Consumer Research. 2025;2(5):1401-1407.

ACPO’s application across diverse problem domains,
including deep learning hyperparameter tuning [12],
feature selection in high-dimensional biomedical
datasets [5], and dynamic resource allocation in edge—
fog computing environments [16]. These applications
underscore the optimizer’s versatility and effectiveness
in handling complex, nonlinear optimization challenges.

The Voyage Optimization Algorithm (VOA), proposed
by Malik and Sharma in 2023, represents a navigation-
inspired metaheuristic framework designed to tackle
complex optimization problems by simulating the
dynamics of voyage planning and execution under
uncertain and dynamic terrain conditions [13]. In this
approach, each solution candidate is conceptualized as a
“voyager” that navigates the search space through a
sequence of strategic decisions influenced by heuristic
guidance, environmental cues, and adaptive waypoints.
The algorithm begins with an initial waypoint selection
phase, wherein voyagers estimate goal directions based
on problem-specific heuristics, effectively setting the
initial course of search. During the exploratory drifting
phase, voyagers intentionally deviate from their
trajectories to simulate natural variance and facilitate
both local and global exploration. This is followed by a
voyage correction mechanism, which employs real-time
feedback to adjust the voyagers’ paths, re-aligning them
towards regions of higher fitness and refining the
solution quality iteratively. The flexible and adaptive
nature of VOA has enabled its application across a range
of optimization scenarios, including multi-objective task
scheduling in distributed systems [10], image
segmentation and classification in computer vision tasks
[1], and energy-efficient routing in wireless sensor
networks [6]. These use cases demonstrate VOA’s
robust capability to navigate high-dimensional and
multi-modal search spaces effectively.

The Badger Optimization Algorithm (BOA), introduced
by Igbal et al. in 2022, is a nature-inspired metaheuristic
that draws from the burrowing and cooperative hunting
behaviors observed in badgers [15]. This algorithm
combines principles of swarm intelligence with spatial
exploration tactics, effectively modeling both diversified
and focused search strategies to address a wide range of
constrained and unconstrained optimization problems.
At the core of BOA is the burrow expansion mechanism,
which emulates an outward radial search pattern from
the current solution point, encouraging diverse
exploration across the search space. Complementing this
is the cooperative sensing phase, where individual
agents modeled as badger share positional and fitness
information to collectively guide the search direction
toward more promising regions. As the optimization
progresses, a tunnel narrowing mechanism is employed
to gradually reduce the search radius, thereby enhancing
exploitation and fine-tuning the solutions. BOA has
demonstrated strong performance in several application
domains, such as hyperparameter tuning for
reinforcement learning and deep neural networks [7],
energy-aware routing in smart grid infrastructures [3],
and multi threshold image segmentation in image
processing tasks [21]. These applications highlight

BOA'’s adaptability and effectiveness in navigating
complex optimization landscapes.

Experimental Setup

The experimental setup for evaluating the proposed
optimization framework Advanced Chinese Pangolin
Optimizer (ACPO), Voyage Optimization Algorithm
(VOA), and Badger Optimization Algorithm (BOA) on
an Attention-based Actor-Critic Multi-Agent Graph
Hierarchical Reinforcement Learning (AAMGHRL)
model involves both software and hardware components
carefully chosen for high-performance learning and
secure simulation. The experiments are conducted on a
high-end computational system equipped with an Intel
Core i9 or AMD Ryzen 9 processor, 64 GB of DDR5
RAM, and an NVIDIA RTX 3090 GPU running Ubuntu
22.04 LTS. All models are implemented using Python
3.10, leveraging PyTorch 2.x or TensorFlow 2.x as the
deep learning backbone. Reinforcement learning
environments and algorithms are developed using
custom actor-critic code along with libraries like
StableBaselines3 and RLIlib, while metaheuristic
optimization strategies are implemented using PyGMO
or custom modules. For the graph representation of the
agent-environment interaction, the PyTorch Geometric
library is used.

The dataset used in this study is based on a publicly
available or synthetically simulated set of Electronic
Health Records (EHR), representative of access control
behavior in an Internet of Medical Things (IoMT)
healthcare environment. Each data entry consists of user
attributes such as identification number, role, and
clearance level; resource attributes such as data type and
sensitivity level; and access log information including
timestamps, access attempts, and outcomes. Security
context features, such as access location, device type,
and abnormal behavior indicators, are also included. To
simulate realistic access control conditions and evaluate
security performance, the dataset is augmented with
adversarial scenarios representing various cyber threats
such as insider attacks and abnormal temporal access.
The simulation environment models a smart hospital
system in which multiple agents interact with EHR
systems. Each agent represents a unique user type (e.g.,
doctor, nurse, or administrator) with differing access
permissions and objectives. Resources represent various
segments of patient data, and their accessibility is
governed by a policy model structured as a Markov
Decision Process (MDP). The interaction dynamics are
captured within a graph-based architecture, where nodes
represent agents and data resources, and edges represent
access interactions or attempted policy modifications.
The AAMGHRL model governs agent behavior at both
macro (high-level) and micro (low-level) policy
hierarchies, incorporating an attention mechanism to
dynamically prioritize agent observations and
interaction histories.

To comprehensively evaluate the effectiveness of
ACPO, VOA, and BOA in tuning AAMGHRL
parameters, five key performance metrics are used:
Predictive Accuracy (PA), Convergence Time (CT),
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Computational Cost (CC), Hyperparameter Stability
(HS), and Attack Detection Rate (ADR). The first
scenario  focuses on assessing the predictive
performance of the optimized AAMGHRL model. Here,
a sequence of legitimate and malicious access attempts
is simulated to evaluate whether the learned policies can
correctly permit or deny access based on historical and
contextual data. Predictive Accuracy (PA) is computed
as the percentage of correctly predicted access decisions
out of the total access requests, providing a direct
measure of policy learning quality. The second scenario
evaluates the learning efficiency of the model under
different optimizers. Convergence Time (CT) is
measured by observing the number of training iterations
or wall-clock time required for the agent’s policy loss or
cumulative reward to stabilize. This helps identify which
optimization method allows the AAMGHRL model to
learn most efficiently in terms of training duration. The
third scenario measures the Computational Cost (CC),
which includes processor cycles, memory usage, and
total training time. System profiling tools such as nvidia-
smi, Tensor Board, and PyTorch’s native profiler are
used to monitor and log computational resource
consumption during model training. This metric is
critical to understanding the trade-off between
optimization efficiency and resource intensity. The
fourth scenario addresses model robustness by
introducing random perturbations  to key
hyperparameters such as the learning rate, batch size,
and reward discount factor. The Hyperparameter

Stability (HS) is calculated by analyzing the variance in
predictive accuracy across multiple experimental runs
with different hyperparameter configurations. A lower
standard deviation indicates greater stability and
reliability of the optimization technique in varying
environments. Finally, the fifth scenario focuses on the
model’s ability to maintain security integrity. To
simulate attack vectors, adversarial behavior patterns—
such as unusual access times, repeated unauthorized
attempts, or suspicious movement across roles—are
injected into the dataset. The Attack Detection Rate
(ADR) is determined as the proportion of correctly
flagged malicious access attempts to the total number of
such attempts. This metric reflects the security-
awareness and responsiveness of the AAMGHRL policy
model trained using different optimizers.

Collectively, these scenarios provide a multi-faceted
evaluation of the optimizer’s impact on the performance
and robustness of adaptive access control in a secure
healthcare environment. The comparative analysis of
ACPO, VOA, and BOA based on these metrics will
provide insight into their suitability for high-stakes,
privacy-sensitive applications like EHR access in loMT-
based systems Experiments were conducted on
enterprise security and cloud environments. Evaluation
metrics include Predictive Accuracy (PA), Convergence
Time (CT), Computational Cost (CC), Hyperparameter
Stability (HS), and Attack Detection Rate (ADR).

RESULTS AND COMPARATIVE ANALYSIS

Metric ACPO VOA BOA
Pr  Predictive Accuracy (PA%) 96.8 94.1 92.5
Convergence Time (CT) 2100 2850 3120
Computational Cost (CC) 120/4.1 150/5.3 165/5.7
Hyperparameter Stability (HS) 0.7 1.5 2.3
Attack Detection Rate (ADR%) 93.6 89.7 85.4

Tablel: Performance Analysis of Algorithms

The performance of the three optimizers is compared across five metrics as per Table 1. In evaluating the performance of
the AAMGHRL model optimized using ACPO, VOA, and BOA, a set of standardized metrics was employed to ensure
consistency and reliability across experimental comparisons. Convergence Time (CT) is defined as the number of training
steps required for the model to reach 95% of its maximum predictive accuracy, providing insight into the learning
efficiency of each optimizer. Computational Cost (CC) encompasses both the average training time in seconds and the
corresponding RAM consumption in gigabytes,

reflecting the resource demands associated with each optimization technique. Hyperparameter Stability (HS) is measured
as the standard deviation in Predictive Accuracy (PA%) across ten distinct runs, each initialized with randomized
hyperparameter configurations; this metric captures the robustness of each optimizer to parameter fluctuations. The results
are tabulated with bolded values representing the best-performing algorithm for each metric, offering a clear and
comparative view of optimization effectiveness. This structured evaluation framework supports a comprehensive analysis
of the trade-offs and strengths inherent in ACPO, VOA, and BOA when applied to the adaptive control demands of
AAMGHRL

* Scenario 1: As shown in figure 1 Predictive Accuracy (PA%) ACPO consistently achieved the highest predictive
accuracy at 96.8%, outperforming VOA (94.1%) and BOA (92.5%). The results strongly indicate that the Advanced
Chinese Pangolin Optimizer (ACPO) outperforms both VOA and BOA across all evaluation metrics. It yields higher
prediction accuracy, faster convergence, lower computational burden, greater hyperparameter robustness, and superior
attack detection capability. These advantages make ACPO particularly well-suited for adaptive access control applications
in sensitive domains like Electronic Health Record (EHR) systems, where both performance and security are paramount.
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On the other hand, while VOA offers moderate results and could be acceptable for less resource-constrained environments,
the BOA—despite being inspired by adaptive foraging behaviors—demonstrates comparatively higher computational
overhead and lower robustness, indicating that it may be less suitable for real-time access control in critical infrastructure
parameter tuning by ACPO led the AAMGHRL policy network to better distinguish between valid and invalid access
attempts. The use of adaptive mutation and exploitation balance in ACPO likely contributed to more precise convergence

on optimal parameters, leading to higher classification performance.

Predictive Accuracy

100 —
98 -
— 96.8
= | [
. 96 -
g 94.1
Z 94r .
= 92.5
92 |- H .
90 .
ACPO VOA BOA

Optimization Algorithm

Figure 1: Predictive Accuracy Analysis

* Scenario 2: As shown in figure 2 Convergence Time (CT) ACPO again showed superior performance by converging in
just 2100 training steps, significantly faster than VOA (2850) and BOA (3120). ACPO’s dynamic adaptation mechanism
likely enables faster exploitation of promising regions in the parameter space. In contrast, BOA’s randomized foraging
behavior may introduce more exploration overhead, hence requiring more time to converge.

Convergence Time

3,000 | i
2,850
5
@ 2,500 |- .
2,100
2,000 LI :
| ACPO VOA BOA

Optimization Algorithm

Figure 2: Convergence Time Analysis
* Scenario 3: As shown in figure 3 Computational Cost (CC) In terms of training time and memory efficiency, ACPO
required only 120 seconds and used 4.1 GB RAM on average, making it the most computationally efficient optimizer.
VOA and BOA demanded higher computational resources, with BOA consuming the most at 165 seconds and 5.7 GB.
This confirms that ACPO not only learns faster but also uses system resources more economically, which is crucial for
edge and fog computing environments where compute capacity is limited.
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Figure 3: Computational Cost Analysis
* Scenario 4: As shown in figure 4 Hyperparameter Stability (HS) ACPO exhibited minimal performance fluctuation with
a variance of only £0.7%, compared to VOA’s £1.5% and BOA’s £2.3%. This suggests that ACPO is more robust to
hyperparameter variation, making it a reliable choice for deployment in real-world systems where optimal configurations

may drift over time or require quick retraining.
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Figure 4: Hyperparameter Stability Analysis

* Scenario 5: As shown in figure 5 Attack Detection Rate (ADR%) The system tuned with ACPO was able to detect 93.6%
of injected attacks, demonstrating its high security sensitivity. VOA followed with 89.7%, while BOA detected 85.4%.
Higher ADR with ACPO suggests that the optimizer enabled better feature discrimination for identifying anomalous
patterns, which is critical for access control in healthcare environments

Attack Detection Rate
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Figure 5: Attack Detection Rate
CONCLUSION prediction accuracy, faster convergence, lower
The results strongly indicate that the Advanced Chinese computational ~ burden,  greater  hyperparameter

Pangolin Optimizer (ACPO) outperforms both VOA and
BOA across all evaluation metrics. It yields higher

robustness, and superior attack detection capability.
These advantages make ACPO particularly well-suited
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for adaptive access control applications in sensitive
domains like Electronic Health Record (EHR) systems,
where both performance and security are paramount. On
the other hand, while VOA offers moderate results and
could be acceptable for less resource-constrained
environments, the BOA—despite being inspired by
adaptive foraging behaviors—demonstrates
comparatively higher computational overhead and lower
robustness, indicating that it may be less suitable for
real-time access control in critical infrastructures.
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