Original Researcher Article

Air Quality Monitoring and Alert System

Dr.S.Prabakaran, 1*, Mr.Arivarasan 2, Dr.S.Prabakaran 3, Pradeepa.S 4, Priyadharshini.R 5, Pavithra.D 6

¹AP/Department of Computer Science and Engineering, VSB Engineering College, Karur.

Email ID: mokipraba@gmail.com

²AP/Department of Computer Science and Engineering, VSB Engineering College, Karur.

Email ID: arivarasan.vsbengineering2023@gmail.com

³AP/Department of Computer Science and Engineering, VSB Engineering College, Karur.

Email ID: mokipraba@gmail.com

⁴Department of Computer Science and Engineering, VSB Engineering College, Karur.

Email ID: <u>prathisamiyappan@gmail.com</u>

⁵Department of Computer Science and Engineering, VSB Engineering College, Karur.

Email ID: priyapriyabalamurugan@gmail.com

⁶Department of Computer Science and Engineering, VSB Engineering College, Karur.

Email ID: pavithraduraisamy114@gmail.com

ABSTRACT

The impact of air pollution on health and environmental sustainability is also negative and a reliable mechanism must be established to check the pollution levels and provide timely data to be used to make decisions. An Air Quality Monitoring and Alert System would help in such objectives by monitoring the key airborne pollutants which would include PM2.5 (fine particulate matter), PM10 (coarse particulate matter), carbon monoxide (CO), nitrogen dioxide (NO 2), sulfur dioxide (SO 2) and ozone (O 3) in ambient air based on sensors installed which will be equipped with Internet- of-Things (IoT) communication and are able to send wireless messages to alerts.. The pollution indicators derived via sensor measurement are processed via cloud-hosted information systems and/or edge computing nodes, as required for scalability, accuracy and low latency to deliver the sensor data. The Alert System architecture incorporates calibration algorithms, data preprocessing and machine learning models to dampen noise, isolate suspected conspicuous anomalies, and assist in forecasting increases in ambient air pollution in health risk indicators. Predictive modeling in combination with time-series analysis will enable detection of possible tendencies in pollution health risk indicators and help to initiate alerts before exceeding thresholds established.

Keywords: Air Quality Monitoring, IoT Sensors, Pollution Detection, AQI, Real-time Alerts, Cloud Computing, NoSQL Database, Data Visualization, Machine Learning, Environmental Heal

1. INTRODUCTION:

Monitoring systems and alerting systems to support air quality monitoring have become increasingly important tools to address the challenge of air pollution, an ongoing public health issue and measure of the quality of the environment. Monitoring systems/alerting systems are supported by advanced sensors to assist with accurately measuring trends in air quality in real time for important pollutants such as particulate matter (PM2.5, PM10), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO₂) and ozone (O₃). The system utilizes IoTenabled devices to diary data in real time thus supporting direct and accurate measurement of and tracking changes in air pollution levels in real time in geographical areas. The real- time information collected is often honed/processed and analyzed to identified actionable intelligence, potentially with the assistance of cloud computing. The alerting capability is important in relation to required notifying communities of pollutants above a threshold level and then allowing communities and

authorities to engage in preventative mitigation plans. Alerts are typically generated routinely and disseminated typically through the mobile app, web-based dashboards, or through text alerts. Alerting systems can also assist regulatory dissemination to environmental agencies for verification of compliance with regulations, urban planning, or reduction of public health risk. It is the use of visual tools which helps better communicate and represent air quality spatially and temporally. As smart city concepts and IoT technology expand, air quality monitoring and alert systems offer a viable, scalable strategy to minimize both pollution impact, and the health risks associated with polluted air, through continuous monitoring and timely awareness.

Volume-2 | Issue-6 | Dec: 2025

Real-time air quality monitoring and watch systems are becoming vital tools to counteract the increasing concern of urban air quality. Air quality, a public health problem has deteriorated more than other public health issues due to urbanization without the necessary investment in infrastructure. Traditional air quality monitoring systems measure various concentrations of pollution, primarily

using stationary, centralized air monitoring stations and deal mostly with analysis on the historical data. They consistently lack adequate spatial resolution and the temporal resolution which allows of timeliness if action is to take place. The newer systems resolve these resolution shortcomings, putting the Internet of Things (IoT) technology in use with multipollutant sensors and monitoring air quality bits of information: particulate matter (PM2.5, PM10), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) as a daily, real-time, or real-time background monitoring. The sensors will remain stationary however, located on a moving monitor such as a drone or vehicle, these sensors then receive updated analytics, from weather stations, which are then sent wirelessly, over the Internet, by either WiFi, LoRaWAN, or more recently 5G technology, which sends data, the reports, to cloud-based indirectly processed and stored servers. Such systems are built amidst the incorporation of AI and machine learning algorithms, which makes them more robust with automatic sensor management and calibration, detection of anomalies and prediction of the patterns of pollution to notify you and assist in decision-making. Data visualization will be through mobile applications, web dashboard, and display boards to the community, where the community is engaged to ensure ultimate awareness to eventually inform them. These systems are scalable and flexible to provide not just compliance environmental regulations on assessment and monitoring, but also for the empowered action of citizens and policymakers to mitigate exposures to pollution and act on air quality alerts. The combination of IoT, AI, and cloud computing represents a real paradigm shift in air quality management in that it effectively transforms real time, localized data into meaningful information that drives urban health improvement.

2. LITERATURE REVIEW

Air quality monitoring and alert systems have improved with developments in sensor technology, IoT, and machine learning. Early systems were often restricted by high costs, limited scale to a location, and often offered no option to be monitored remotely. Recent research has demonstrated the use of inexpensive microcontrollerbased systems such as Arduino and ESP8266 to detect multiple gases (CO, CO2, LPG, PM2.5, PM10) -with many sensors now merged together for one sensor. In addition, real-time data collection combined with communication protocols of Wi-Fi, 5G and LoRa wan make it possible to send the data collected to a cloudbased application, where it can be monitored remotely, and alerts can be sent to a mobile app or display in a timely manner. Tools like MATLAB and Proteus have improved the design process and validation of performance levels prior to implementation in real-life environments. With implementations such as buzzer, LED and mobile alerts, these systems were able to notify users of any impaired safety levels for pollutants. The introduction of AI and machine learning technologies were able to enhance environmental changes through predictive analytics and auto-calibration for sensors.

Real-time air quality monitoring and alerting applications are becoming more necessary as society continues to address urban air pollution, which poses one of the largest health and environmental risks to humankind. Air quality monitoring using traditional means relies upon a series of centralized monitoring stations located around a city, which varies in spatial coverage, has a time delay, and relies on predetermined statistical models. There is growing interest in distributed, sensor-based air quality monitoring systems enabled by the Internet of Things (IoT) used for continuous real-time monitoring of the environment. Recent research has demonstrated stationary and mobile sensor nodes, outfitted with multi-pollutant sensors that detect the air pollutants that matter most: PM2.5, PM10, CO, NO2, SO2 and O3, along with different wireless communications technologies (e.g. Wi-Fi, LoRaWAN, 5G), in order to send data in real time while providing sufficient coverage of a densely-placed sensor array in an urban area. Artificial intelligence and machine learning analysis can be used for sensor calibration, anomaly detection, and even pollution level forecasting, as well as spectral threshold detection for alarm, to provide timely and helpful public environmental and health data in informing policy. One major development is the advent of inexpensive and portable sensors that allow for scalable and low-barrier air quality measuring indoors and outdoors. The value of these systems is obtained when they are combined with microcontrollers (e.g., Raspberry Pis, Arduinos, etc.) which serve as the manager of the sensor suite and facilitate communication of captured data for storage and analysis remotely in cloud-hosted services (e.g., AWS, Google Cloud). Such hybrid system would consist of a combination of fixed stations where mobile sensors that can be reached via drone and/or other vehicles generate a moving sensing network and will record and trace spatial and temporal changes of pollution. It has also been presented that data visualization may offer a significant sense of access and usability by the populace that is indispensable in promoting awareness and eventually transforming individual behaviours and interacting communities. Different application in urban settings have proven successful in all these modalities where even rudimentary coverage density and live capabilities can be termed as a desirable benefit over the old modalities of deployment of sensors. Although these are the technological advances, sensor measure error can still exist especially in unique environmental settings where sensor drift and interference can introduce uncertainty to sensor measure.. In response to overcome these issues, AI-based auto-calibration algorithms, in conjunction with cross-validation with reference-grade monitors, have been utilized to ensure accuracy in data, be it for regulatory or health-related purposes. One challenge associated with real-time systems is the infrastructure necessary to support the data collection, processing, and transmission continuously. Edge computing will need to be implemented so networking can be alleviated at the source while isolating data while not impacting predictive capabilities. Similarly, short- and long-range implications of security and privacy are becoming clearer for environmental systems enabled by IoT-enabled technologies; emerging systems will require secure

protocol transmitted on networks and guidelines for user data will need to be ethically developed and used.

In addition, the literature highlights the need to integrate data from several different implementations including ground-based sensors, satellite and remotely sensed data, to truly assess air quality. The intentions to standardise data and facilitate interoperability of heterogeneous sensor networks supports large-scale frameworks to be utilised across an entire city. In terms of research trends, advances in predictive analytics are leveraging big data to improve predictive pollution mitigation, allowing urban planners and policymakers to take more proactive approaches to mitigation. To conclude, real-time air quality monitoring and alerting applications are evolving into more dynamic integrated systems consisting of interconnected environments created by IoT, AI, cloud and mobile tech that provide near real-time, accessible, useful actionable and real-time data for day-to-day conditions of pollution. It is believed that the applications have the potential to enhance the health outcomes of populations, municipal environmental policies and become sustainable. On-going research and development is underway based on sensor constraints, sensor expansion through the addition of pollutants, better integration of data, scalable systems and enhanced security to the eventual monitoring of our environmental requirements.

3. PROBLEM IDENTIFICATION

Air quality real-time surveillance and notifications are crucial tools of tracking and to interpret the impacts of pollution on human health and the ecosystem. Although new technological developments have been experienced over the past years, these systems face a number of major challenges that restrict their possible efficiency and implementation. One of the major challenges has to do with sensors, their accuracy, and calibration. What complicates this is the fact that the airs quality-measuring system, many of which are based upon cheap sensors that are prone to becoming less accurate - even though this may have been overlooked - due to sensor drift, environmental influences, and variations in temperature and humidity. What makes this tricky, and it is often not thought of, is that it is not easy to maintain continuously calibrated sensors calibrated and therefore leads to problems with the data and loss of faith by the data consumers. This has a disadvantage of invalidating realtime pollution data and predicted modeling, but it also causes latency and possible loss of data in areas with a poor internet connection or with low bandwidth phones on cars or drones. Such developments enable policy makers and the general population to possess actionable intelligence in order to monitor dynamically air pollution.Although there has been some development made so far, considerable challenges remain in userfriendly, standardized multi-sensor IoT frameworks and in developing sensors that operate for long periods of time and under challenging conditions. Future systems will focus on scalable and economically viable solutions that leverage AI to provide timely, multi-pollutant air quality data that is essential for protecting public health and safeguarding the environment.

When developing practical solutions, it is important to first understand that there are several complexities with a real time air quality monitoring and alert system. Some of the dimensions of issues includes sensor accuracy and sensor quality, which are applications using low-cost, often less validated devices and poor, and/or inaccurate pollutant analysis with respect to either air quality sensors or combination air quality sensors. In any continuous real time data collection system, there will be a need of a data processing platform with storage capabilities in order to process the substantial amount of data with near real time latency. There may also be variability in the sensor based data due to other contextual environmental conditions, such as ambient weather conditions of other ambient events that, could also change the sensor data and influence a continuous real time monitoring system. Geographical variability is another dimension of potential geographical coverage and the effective utilization of potentially a large geographical area. Additionally, there will be several potential integration issues related to the communication of information from many sensors, utilizing many different types of sensors or methods of communicating in several regions and varieties of geography. Reliability of not only subsequent but ONE accuracy of predictions, along with or related to, high predictions in relation to monitoring, adds to the challenge of a real-time monitoring system related to small sample sizes or potential large environmental variability in several factors because it could never be generalized or predicted using machine learning considerations or, for that matter, simply using machine learning as an enhancement for data processing. Security and privacy may also be a challenge.

4. PROPOSED SYSTEM

Air pollution has emerged as a significant worldwide problem due to its adverse consequences for public health, the environment, and the quality of life. In order to effectively address air pollution, we suggest a system to monitor air quality in real-time and deliver notifications to users with information about air quality that could have harmful effects. This system would provide immediate assessment of pollutant concentrations to analyze data in real-time, then provide alerts to notify users if pollution levels become dangerous. By providing users with immediate and accurate information, the system would provide actionable notices that empower users and public servants about taking preventative measures to avoid potential exposure to poor air quality. The system consists of a network of tracking stations deployed at a limited number of predetermined locations throughout various sites (urban, industry and local traffic sites). Each of the stations has sensors to measure for the air quality (i.e. outdoor pollutants - particulate matter (PM2.5 and PM10), Carbon monoxide (CO), Nitrogen dioxide (NO2), Sulfur dioxide (SO2), Ozone (O3), and Volatile Organic Compounds (VOCs)). In addition to air quality measurements, each station will add into the measurements some environmental measurements (i.e. we are testing for temperature, humidity, etc.) to provide context to the air quality measurement and to measure the uncertainty in on-site measurements through the measurement technology. Once the air quality

measurements and environmental measurements are made, the sensors will communicate the measurements to the microcontrollers to save all measurements, provide an on-site processing unit, and provide information back to the central site to update about the measurements (at least once every second). Wireless communication technologies (Wi- Fi, GSM, or Lorawan), depending on location and network availability, facilitate the transmission of data from sensor nodes to the central platform. The event collects large volumes of data, and data are processed in the cloud. Algorithms in the cloud calibrate the readings from sensors to filter noise and correct errors to some extent. In addition, machine learning models are added to check for abnormal pollution spikes and predict shortterm trends, including information about the source of pollution and events that might occur in the future. The system will function via a mobile app and web dashboard, enabling users to conveniently access current air quality information. The system will offer different concentrations of pollutants and the air quality index (AQI) established on a color- coded graph from good to hazardous. Users will also have access to historical data, observe patterns of pollution, and be able to select and set notification preferences through SMS, email, or push notifications to the app. Users could receive these notifications anytime, one or several pollutants exceed the limit of safety established for each pollutant, and when notified, users will be able to make informed choices regarding outdoor activity and, among other things wear a mask outside. Notification preferences will also consider sensitivities and location. Although the system has its advantages, limitations include sensor accuracy over time, confidentiality and reliability of data transmission, and connectivity issues in remote areas. To deal with these issues, the design includes planned calibration protocols, encryption, and a hybrid communication network. Cost concerns are monitored by using modular and scalable sensor units that can be customized and reused in different

5. METHODOLOGY

Selecting and Installing Sensors:

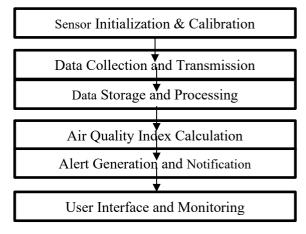
As an initial step in deploying a sensor platform, we are required to select a number of sensors that will measure important air pollutants including (but not limited to) particulate matter (PM2.5, PM10), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and volatile organic compounds (VOCs). Once again, the sensors need to be reliable (the sensors are operable for long periods of time and will not require replacements), low-cost (the budget can deal with some level of issues that may arise with over a dozen different sensors that we will consider), and relatively rugged for outdoor, continuous use (meaning the sensors will not need to be repaired or replaced very often, typically have some degree of weather resistance). In addition to air quality sensors, environmental sensors measuring temperature and humidity are included to provide context for air quality measured by the sensors. After the sensors are selected, the sensors will be mounted on small monitoring stations that will be deployed at our target area, either urban, heavily traveled roads, industrial

areas, and/or neighborhoods to provide appropriate coverage and density of sampling.

Data Acquisition:

pollution sensors will continuously measure pollutant concentrations at predetermined intervals (e.g., every 60 minutes or every 5 minutes). These raw sensor readings are collected by a microcontroller or embedded system located within each monitoring station. To ensure measurement stability, the microcontroller performs data preprocessing, including noise reduction and aggregation of readings based on the configured frequency, before transmitting the data for further analysis.

Notification and Visualization:


When pollutant levels exceed predefined threshold limits, automatic notifications and alerts will be sent to relevant stakeholders — including government officials, first responders, and the general public. These alerts will be delivered through various channels such as mobile geolocation apps, SMS, email, smart billboards, and integrated dashboard systems. Similarly researchers, decision-makers, and the public will be able to visualize air quality data in real-time, using, interactive dashboard and mobile geo-location apps.

Data Processing and Analysis:

Collection and processing of data can also be handled in the cloud using analytics to process data collected through machine learning to calibrate sensors and predict air quality of the future. AI-based algorithms will analyze environmental data, for patterns, hotspots and pollution events, also the sensor data could be cross-validated against reference monitors.

System Installation Stages:

Provide the optimal physical placement of sensors (stationary/movable nodes) ahead of the anticipated deployment. Set up how wireless networks will connect through reliable and low latency data transmission. Build cloud storage and a real-time data processing pipeline. Connect a dashboard, using web/mobile-enabled devices, to view the data in addition to alerts. Work with permitting and/or government regulatory agencies to build the pipeline.

6. CHALLENGES

High Financial Investment and Maintenance

Often the cost of air quality monitoring devices can be high and the maintenance required is a constraint limiting the widespread implementation necessary, especially in lower resourced areas of the world. High costs and maintenance continue to limit installations to specific locations and peak monitoring, resulting in sparse networks of monitoring instruments.

Limited Coverage in Space:

Monitoring stations only provide data from limited and specific locations, resulting in insufficient information to quantify spatial variability, particularly in inherently heterogeneous urban-dominated settings. Sparse locations make it very difficult to gain a comprehensive view of air quality across broad areas or an entire city.

Issues with Sampling and Measurement:

In vivo sampling techniques that utilize a pumping mechanism to get air from the site into the sensor housing rather than conducting the measurements in situ creates additional error and contamination of samples. Typically, the air that is sampled is collected from an elevation likely different than the breathing zone of the public, which again creates ambiguity in public health risk assessment. Many sensors do not sample all the main pollutants for calculating accurate air quality indices.

Limitations of Sensors and Technology:

Much variation exists in the sensor quality and quality control among various sensor producers, which makes conclusions on the reliability and comparability of the sensor data more difficult. Low-cost sensors particularly do not have enough precision and do require calibration on a regular basis using high-quality or reference monitor. Traditional instruments can be bulky and heavy, which may not be appropriate for a mobile monitoring approach or a dense spatial network in the same location.

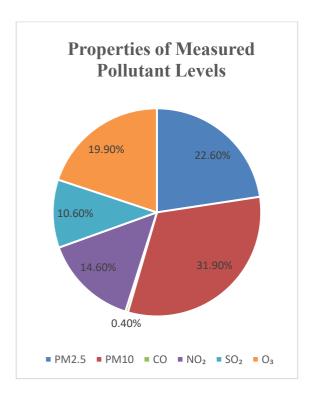
Data Integrity and Continuity:

Regular gaps in data from a sensor malfunctioning or downtime diminishes trust in monitoring data. Handling problems with outliers, duplicate values, and bad readings increases reliance on more sophisticated quality assurance measures, and statistical maneuvers. Compounding the problem, if integrating data from a mix of sensor types and protocols is also tough, this complicates synthesizing all the data.

7. RESULTS AND DISCUSSIONS

The air quality monitoring alert system was designed and properly executed by developing core features including real- time data from multiple air quality sensors, accurate determination of air quality index (AQI), automated alerts generated levels of pollutants exceeded safe levels, with notifications provided for users via SMS, through an App. Users were provided timely notifications for hazardous air quality conditions. The system included a user-friendly dashboard of air quality levels monitoring live, with historical information available for analysis. The calibration of sensors and the verification of datasets have improved accuracy in measurements. In addition, the system allows for monitoring in a multitude of locations, including checks of sensor health status for continued

reliability without error. Overall, the system is as an efficient hardware and software integration in a scalable solution to urban air quality and public health. IoT sensors based on real-time air quality monitoring can significantly enhance the detection of pollutants and allow the stakeholders to inform authorities and people in real time in case the level of pollutants grows in a particular area. Real time measurement systems have the benefit of presenting a flow of information on PM2.5, CO and NO2 in real time, as opposed to monitoring systems that only observe periodic or lagged data. New emerging contaminants can also be monitored using particular multi-gas sensors by real-time systems.

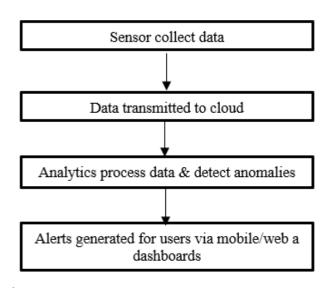

The data used can support authorities and monitoring systems in initiating focused interventions and measures to decrease chronic exposures of the populations, and improve the management of air quality of urban areas through predictive analysis, anomaly detection, and alerts on spikes in pollution. Integrating AI analytics into the sensors networks will give us the power to do the predictive analysis, detect anomalies, and send alerts about spikes in pollution. The AI analytic models will compare the previous data on pollution and the current pollution to identify the anomalies, as well as real-time notification and response via the web dashboards, mobile applications, and public screens to enable action by the populace and policymakers.

The weather data will also enhance predictable probability to uphold improved urban planning regulation consideration as the current systems exploit both stationary and mobile sensors, attached to either a vehicle or a drone, to allow monitoring of industrial, remote, and urban locations. The use of LoRaWAN, 5G, and cloud will be able to offer quick and trustworthy data transmission to grant real time access to data, which will offer new chances to monitor the environment and take decisions. Pilot tests on urban settings have shown that the method is comparatively scalable, cost-efficient and enhances responsiveness and substitute conventional regulatory tools in most types of environmental measurements. Calibration of sensors and data verification of stability of measurements in different settings are one of the current issues. Studies suggest that additional rigor in machine learning models and data secure infrastructures is necessary to address privacy and trust issues for larger populations. Future developments may include amount of sensor sophistication, coherent forecasting algorithms to adjust for conservation status, optimal sensitivity to change receptors, and more jurisdictional assignments with authorities for larger environmental and public health implications.

8. RESULT ANALYSIS

The development and actualization of an Air Quality Monitoring and Alert System is completed which utilized automated detection and alerts to determine air quality using data collected on IoT based sensors and through cloud computing processes to analyze data driven responses. The system allowed for continuous measurement of concentrations for six criteria pollutants - PM2.5, PM10, CO, NO₂, SO₂ and O₃. The system used the composite measure of air quality characteristics utilizing

an Air Quality Index (AQI). For test purpose sensors measurements were employed for specify time periods in order that deployments and verbal uploads could be document for analysis and visualization through application and dread also associated with a dashboard interface. The sensors enabling automatic alerts for pollution constituents where concentrations exceeded standards threshold. The alerts notifications established communicated through text message or application to flooding the notifications.


9. CONCLUSION AND FUTURE WORK

The air quality monitoring and notice system is an essential step in addressing air pollution challenges in urban have a plan to tackle and global venues as part of this project. Community members as well as regulatory bodies to informed based high quality of air quality data in realtime, so they can protect the public health to minimize exposure to air pollution. Such future aspects of this work as the incorporation of advanced technologies that can improve on broader predictive analytics and scalability, such as AI, IoT, and cloud computing, may be added, and hyper-local monitoring over the densely populated urban space can be overcome. When/when combined with other data streams of environmental data (water, noise, soil, etc.) such sensors can assist in offering a more comprehensive check-up of the health of an ecosystem. Again when data is offered world wide, more individuals can collaborate to offer a universal dataset and data sharing universities(that may then be worked upon independently) will enhance the ability to make timely interventions and manage pollution.

On-going development of the accuracy of sensors, datafusion, notifications to the end-users and the way the data is displayed is what ultimately leads to the better- usability and sustainability of a system, which we are convinced, has its future and will leave an impact on cleaner air and more health opportunities to communities worldwide.

With the help of Internet of Things sensors, cloud computing, and AI analytics, one is able to keep track of several key pollutants in the area and relay that information and warning signs to the relevant stakeholders and the population on a real-time basis. The real-time data on pollution dynamics will result in improved action efforts to mitigate atmospheric pollution load, improved environmental management taking variability as a natural fact, and faster warning of the level of external and personal health risks, particularly in urban and industrial environments that fluctuate and vary in terms of the amount of pollution. Further studies are needed to consider coverage of sensors of geographic areas where sensor placement is not feasible (e.g., remote and underdeveloped areas) by using a cheap, low-energy, dense sensor network that can be integrated with mobile services (e.g., web drones, ground vehicles). Additional attention to both sensor survivability and self-calibrating should be given to enhance reliability in the long term. Further developing the AI algorithms to become increasingly sophisticated in the use of environmental variables and real-time meteorological data would help forecast pollution and develop and disseminate warning messages related to different vulnerabilities communities.

Future research in real-time air quality monitoring and alert systems will optimize existing innovative technologies for deeper understanding, accuracy, accessibility, and meaningful leads on air quality data. The trends are clear that relationship to a greater reliance on IoT-enabled smart sensors obtaining real-time/high resolution air quality measurements in multiple environments, AI and machine learning-based modeling for predictions of when pollutants will occur, and resulting in more anticipatory strategies to mitigate impacts. Remote sensing technology from satellite and UAV monitoring could also act as a remote method monitoring augmenting areas in spatial coverage where ground methods' methods can be limited in spatial coverage. Furthermore, the personal/ wearable air quality devices will allow users to monitor their own personal exposure to air pollution to allow for a better awareness in order to personal health decisions, for example. Increased efficiencies in energy usage with solar power monitoring can also be used persistently in limited access situations and energy monitoring. Ultimately, the future initiatives goal toward an integrated monitoring plan for air quality related indicators with other environmental indicators; this provides more

REFERENCES

- 1. B. Singh et al. (2025). "Air Quality Monitoring in Real Time Using IoT Sensors." International Journal of Research and Technology Innovations, 7(4), IJRTI2504133.[1]
- 2. A. Kumar & S. Sharam (2025). "Real Time Air Quality Monitoring and Prediction System Using IoT." International Journalfor MultidisciplinaryResearch, 7(2):40370.[2]
- 3. Gueye, A. et al. (2025). "Design of low-cost cloud IoT-based real-time monitoring system for PM2.5/PM10." Measurement and Control, August 2024.[5]
- 4. Pang, K. et al. (2025). "A real-time online methodology for monitoring air quality conditions in indoor spaces with varying environments." Journal of Cleaner Production, \$130910422500282X.[4]
- 5. S. M. Minhazur Rahman et al. (2025). "An affordable and portable real-time air quality monitoring system and assessment of environmental impact.
- 6. "arXiv:2506.22458v1.[3]
- Precedence Research (2025). "Air Quality Monitoring System Market Size to Reach USD 5.82 Billion by 2024." Precedence Research, August 2025.[7]
- 8. J. Cabuk (2025). "Real-time monitoring indoor and outdoor IAQ by IoT sensors." Journal of Cleaner Production.[4]
- 9. K. Sharma (2025). "Air Quality Monitoring in Smart Cities via IoT: A Real Time Approach." IJACSA, 15(4):87.[6]
- 10. Science Direct (2024). "AI System for Air Quality Monitoring and pollution management enabled real time IoT." Science Direct.[8]

- 11. Persium (2025). "Advantages of using air quality monitoring networks to local government." Persium, June 2024.[9]
- 12. Airly (2025). "Advantages of air quality monitoring and pollution managment." Airly, May 2025.[10]
- 13. Prana Air (2024). "What does real time air quality mean and advantages." Prana
- 14. Oizom (2025). "The Advantages of Monitoring Air Quality". Oizom Blog, August 2025.[12]
- 15. PPS Thane (2025). "Advantages of Air Quality Monitoring; Health, Data & Impact". PPS Thane Blog, July 2025.[13]
- 16. Rikasensor (2025). "What are the benefits and constraints of the air quality sensors?" Rikasensor Blog, March 2025.[14]
- 17. Apollo Pharmacy (2024). "How the air pollution monitoring system works." Apollo Pharmacy Blog, December 2024.[15]
- 18. Zenatix (2024). "6 advantages of IoT Based Ambient Air Quality Monitoring System." Zenatix Blog, December 2024.[16]
- Aurassure (2024). "Air Quality Monitoring in Industries - What Leaders Need to Know." Aurassure Blog, May 2024.[17]
- 20. Clarity.io (2024). "The Purpose and Importance of Air Quality Monitoring." Clarity.io Blog, March 2024.[18]
- 21. ResBee (2024). "IoT Based Air Quality Monitoring and Notifying System." Resbee Journal, 2024.[19]
- 22. EMSOL (2024). "Air Quality Monitoring with Real Time Insights and Distillation Data." EMSOL Blog, August 2024.[20]
- 23. IASCORE (2024). "Improvement of a Real-time Air Quality Monitor with IoT." IASCORE Journal, February 2024.[21]
- 24. ScienceDirect (2025). "Important Matters Regarding Real Time Air Quality Monitoring." ScienceDirect, 2025.[22]
- 25. SAGE Journals (2024). "'Real-time' air quality channels: A review of its technology." SAGE Journals, January 2024.[23]
- 26. ICEAIST (2024). "IoT based Intelligent Control and Alert System of Air Quality." IEEE ICEAIST E-Journal, 2024. [24]
- 27. "Advanced smart inventory management system using IoT." S Prabakaran, V Shangamithra, G Sowmiya, R Suruthi.
- 28. International Journal of Creative Research Thoughts (IJCRT) 11 (4), 37-45
- 29. "A Retrospective Survey on Data Aggregation in Wireless Sensor Networks." P Anbumani, DA Nancy, M Narendran
- 30. International Journal of Engineering Sciences & Research Technology 2, 2348-2354.