

An Integrated TPB-IAM Model of Tourists' Travel Intention: The Dual Moderating Roles of Social Media Disposition and Media Exposure.

Qiyang Yin^{1*}, Ruth Sabina Francis²

¹School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610000, Sichuan, China

² Faculty of Business, Higher Colleges of Technology, Fujairah, United Arab Emirates

* Correspondence Author

Qiyang Yin

Email ID : yinqiyang@outlook.com

ORCID: 0009-0004-7642-1693; Ruth Sabina Francis: 0009-0004-7642-1693

ABSTRACT

In the context of the digital era, social media have profoundly changed tourists' information acquisition and decision-making process. This study constructed a comprehensive theoretical framework integrating the Theory of Planned Behavior (TPB) and the Involvement-Attachment Model (IAM) to explore the dual moderating effects of social media inclination and media exposure on the mechanism of tourists' tourism intention formation. The study utilized a cross-sectional survey design and collected data through social media platforms, obtaining 385 valid questionnaires (valid recovery rate 89.95%). Partial least squares structural equation modeling (PLS-SEM) was used to analyze the data.

The results of the study showed that (1) all three core constructs of TPB (attitude, subjective norms, and perceived behavioral control) significantly and positively affected tourism intention, with the strongest effect of attitude ($\beta=0.312$, $p<0.001$); (2) tourism engagement strongly and positively affected place attachment ($\beta=0.724$, $p<0.001$), and place attachment in turn significantly affected tourism intention ($\beta=0.267$, $p<0.001$); (3) tourism engagement, as a pivotal variable, significantly influenced the three core TPB constructs (β values of 0.615-0.660), connecting affective engagement with cognitive appraisal; and (4) social media tendency significantly positively moderated engagement's effect on attitude ($\beta=0.124$, $p<0.01$) and subjective norms ($\beta=0.156$, $p<0.001$) ($\beta=0.156$, $p<0.001$) and mainly on the cognitive path; and (5) media exposure significantly positively moderated the effect of place attachment on tourism intention ($\beta=0.142$, $p<0.01$) as well as the effect of involvement on place attachment ($\beta=0.118$, $p<0.01$), mainly on the affective path. The integrated model explained 68.7% of the variance in travel intentions, which was significantly higher than the traditional single theory model.

The theoretical contributions of this study are: the first systematic integration of the TPB and IAM frameworks to construct an integrated model covering the dual mechanisms of cognitive decision-making and emotional attachment; the pivotal role of tourism engagement revealed; and the differential moderating mechanisms of social media inclination and media exposure identified. Practically, the study provides guidance on multidimensional marketing strategies for destination managers and tourism enterprises, emphasizing that attention should be paid to both tourists' cognitive appraisal and affective attachment, and differentiated strategies should be implemented for user groups with different social media usage characteristics.

Keywords: Theory of planned behavior; Engagement-attachment model; Tourism intention; Social media propensity; Media exposure; Place attachment.

1. INTRODUCTION:

As a vital pillar industry for global economic development, the sustainable growth of tourism relies on a deep understanding of tourists' behavioral intentions. Against the backdrop of the digital era, the widespread adoption of social media has profoundly transformed how tourists access information and make decisions, presenting both challenges and opportunities for traditional travel intention prediction models. The formation of tourists' travel intentions is a complex psychological process involving interactions across cognitive, affective, and behavioral dimensions. In recent

years, academic research has increasingly focused on integrating diverse theoretical frameworks to provide a more comprehensive explanation of this phenomenon (Ajzen, 1991; Hwang et al., 2005).

Since its inception, the Theory of Planned Behavior (TPB) has emerged as a mainstream theoretical framework for predicting human behavioral intentions. This theory emphasizes the influence of attitudes, subjective norms, and perceived behavioral control on behavioral intentions and has been widely applied in tourism research (Ulker-Demirel & Ciftci, 2020). However, the TPB model exhibits certain limitations when explaining tourism behavior, particularly in its insufficient consideration of

emotional connection and place attachment. Concurrently, the Involvement-Attachment Model (IAM) focuses on the emotional bonds between individuals and specific places, emphasizing the influence of tourism involvement and place attachment on visitor behavior (Gross & Brown, 2008; Hwang et al., 2005). These two theoretical frameworks have distinct focuses: TPB emphasizes cognitive decision-making processes, while IAM highlights emotional bonding mechanisms. Integrating them holds promise for providing a more comprehensive explanatory framework for tourism intention research.

Current academic extensions of the TPB model primarily concentrate on adding single external variables, such as electronic word-of-mouth, destination image, or perceived risk (Bui, 2022; Meng & Cui, 2020). While these studies enhance the model's explanatory power, they often overlook the critical role of emotional attachment in tourism decision-making. Conversely, applications of the IAM model are frequently confined to specific tourism contexts, such as national parks or heritage tourism, lacking systematic integration with cognitive decision-making theories (Ramkissoon, 2023; Chen & Dwyer, 2017). More importantly, in the social media era, tourists' decision-making processes are profoundly influenced by media information, yet existing research has insufficiently addressed the moderating role of social media within theoretical integration frameworks. Studies indicate that social media usage intensity and media exposure significantly impact tourists' cognitive formation and emotional attachment development processes (Omeish et al., 2024; Khan et al., 2021), yet the operational mechanisms of this moderation within the TPB-IAM integrated model remain under-explored.

Against this backdrop, this study aims to construct a comprehensive model integrating TPB and IAM, introducing social media propensity and media exposure as dual moderators to more fully elucidate the contemporary tourist intention formation mechanism. Specifically, this study will examine: (1) how core constructs of TPB (attitude, subjective norm, perceived behavioral control) influence travel intention; (2) the role of tourism engagement and place attachment within the TPB framework; (3) how social media propensity and media exposure moderate these relationship pathways. This research not only deepens theoretical understanding of tourist behavioral intentions but also provides practical guidance for social media marketing strategies in tourism destinations.

2. Literature Review and Theoretical Framework

2.1 Application of Theory of Planned Behavior in Tourism Research

The Theory of Planned Behavior (TPB), developed by Ajzen (1991) based on the Theory of Reasoned Action, posits that human behavior is planned and that behavioral intention serves as a direct antecedent to actual behavior. The TPB model comprises three core constructs: attitude, subjective norm, and perceived behavioral control. Together, these determine an individual's behavioral intention, which subsequently influences actual behavior. Attitude reflects an individual's positive or negative

evaluation of performing a specific behavior; subjective norm represents the perceived social pressure; perceived behavioral control reflects an individual's perception of the ease or difficulty of performing the behavior (Ajzen, 1991).

In the tourism field, the TPB model is widely applied to predict tourists' travel intentions and behaviors. Soliman (2021) employed an extended TPB model to examine tourists' revisit intentions, finding that attitudes, subjective norms, and perceived behavioral control all exerted significant positive effects on revisit intentions. Hasan et al. (2020), in studying destination selection, confirmed the stable predictive power of TPB's three core constructs across different cultural contexts. However, recent systematic reviews have pointed out that TPB also exhibits notable limitations in tourism contexts. Esfandiar et al. (2025) critically reviewed the literature and found that TPB inadequately captures the dynamic evolution of tourism decisions. The model's predictive power notably diminishes when a time lag exists between intention formation and behavioral execution. Furthermore, the traditional TPB model focuses on cognitive decision-making processes while insufficiently considering emotional factors and experiential memories—a shortcoming particularly pronounced in tourism consumption, which emphasizes experiential and emotional connections (Vieira, 2005).

To address these limitations, scholars have attempted to extend the TPB model by incorporating additional variables. In post-pandemic research, Bui (2023) integrated perceived risk and trust into the TPB framework, significantly enhancing the model's explanatory power for domestic tourism behavior. Pahrudin et al. (2021), when studying post-pandemic travel intentions, added health consciousness and non-pharmaceutical interventions, confirming that the extended TPB model possesses stronger predictive capabilities. These studies demonstrate that TPB, as a flexible theoretical framework, can enhance its applicability by integrating context-specific variables. However, most extension studies remain limited to adding single-dimensional external variables, lacking systematic integration of core psychological mechanisms like emotional attachment and place attachment. As Meng and Choi (2019) noted, extending the TPB model should adhere to three principles: new variables must be critical decision-influencing factors, conceptually distinct from existing constructs, and suitable for specific behavioral contexts. Guided by these principles, integrating involvement and place attachment from the IAM model into the TPB framework holds promise for constructing a more robust model for predicting tourism intentions.

2.2 The Involvement-Attachment Model and Place Attachment

The Involvement-Attachment Model (IAM), originating from leisure studies, draws its theoretical foundations from the concept of self-involvement in social judgment theory and place attachment theory in environmental psychology (Hwang et al., 2005). Tourism involvement is defined as an individual's level of interest in tourism activities and the emotional responses they evoke,

conceptualized through three dimensions: attractiveness, self-expression, and lifestyle centrality (Kyle et al., 2004). Place attachment refers to the emotional bond formed between an individual and a specific place, typically encompassing two core dimensions: place dependence and place identity (Williams & Vaske, 2003). Place dependence reflects an individual's reliance on a place for specific functions and services, while place identity embodies the emotional connection between an individual's self-identity and the place's significance.

Empirical research has confirmed the causal relationship between participation and place attachment. Hwang et al. (2005), in a study of Taiwan's national parks, used structural equation modeling to validate that visitor participation significantly and positively influences both place dependence and place identity, with this effect being amplified by the quality of interpretive services. Gross and Brown (2008), in their study of Australian tourism regions, constructed a structural model incorporating four dimensions of involvement (attraction, lifestyle centrality, self-expression, food and wine) and two dimensions of place attachment. Results indicated that lifestyle centrality was the most significant determinant in predicting tourism outcomes. This finding has received broad support in subsequent research, indicating that individuals who perceive tourism activities as central to their lifestyle are more likely to develop deep emotional attachments to destinations (Prayag & Ryan, 2012).

Recent studies have further expanded the application scope of the IAM model. Chen et al. (2022) validated the influence of authentic experiences, involvement, and place attachment on tourist loyalty in a rural tourism context, finding that place attachment fully mediates the relationship between authentic experiences and loyalty. Eusébio et al. (2018) revealed that higher levels of place attachment correlate with stronger environmental responsibility behaviors and greater support for tourism development, which holds significant implications for sustainable tourism development. However, existing IAM research primarily focuses on the direct relationship between involvement and attachment, with limited exploration of how this mechanism interacts with cognitive decision-making processes. Ramkissoon (2023) noted in a recent review that place attachment research requires deeper integration with behavioral intention theory to construct a more comprehensive explanatory framework. This provides the theoretical basis for integrating the TPB and IAM models in the present study.

2.3 The Influence of Social Media on Tourism Intentions

Social media has become a vital platform for contemporary travelers to access tourism information and share travel experiences, profoundly transforming the information environment for tourism decision-making. The asymmetry of tourism information on social media makes it a significant information source, with user-generated content (UGC) exerting a substantial influence on tourism consumption behavior (Xiang & Gretzel, 2010). Research indicates that social media fundamentally alters individual travel planning and consumption patterns by enhancing information exchange, reducing

uncertainty, and fostering a sense of belonging (Hudson & Thal, 2013). Even during the COVID-19 pandemic, travel-related UGC continued to influence the travel decisions of numerous consumers (Hanafiah et al., 2022).

The impact of social media on tourism intention can be analyzed from multiple dimensions. First, regarding information quality, Chen et al. (2023) employed the Elaboration Likelihood Model (ELM) and found that social media information quality influences tourism intention through both rational and emotional pathways, with self-consistency and trust mediating the emotional decision-making pathway. This finding indicates that tourists' processing of social media information involves both rational analysis and emotional responses. Second, from the perspective of social influence, electronic word-of-mouth (e-WOM), as a core feature of social media, has been extensively validated in its impact on travel intentions. Positive perceptions of e-WOM, such as user-generated reviews and photos, significantly influence tourists' perceived happiness (Li et al., 2022).

The moderating role of social media usage intensity has garnered increasing attention. Omeish et al. (2024) examined the influence of social media influencers on Jordan's destination image and visitation intentions, finding that social media usage intensity positively moderated the mediating relationship—heavy users exhibited stronger reactions to influencer content. This moderating effect can be explained from multiple theoretical perspectives: highly engaged social media users have greater exposure to influencers' exemplary behaviors, thereby shaping their tourism interests; while heavy social media usage reflects heightened engagement with and identification toward influencers (Abuhashesh et al., 2021). Khan et al. (2021), examining visitation intentions toward rural tourism destinations, found that social media propensity strengthened the relationship between information and subjective norms, while social media usage positively moderated the link between subjective norms and visitation intentions.

Media exposure, as another crucial moderator, has drawn attention in recent studies regarding its influence mechanisms. Koo et al. (2016) proposed a structural model of destination tourism intention incorporating media exposure as a stimulus factor, revealing how media exposure influences tourism intention by affecting destination image. Al-Gasawneh and Al-Adamat (2020) found that social media exerts a moderating effect, strengthening the relationship between perceived destination image and tourism intention. Recent research further confirms that repeated exposure to travel videos can alleviate potential tourists' perceived risk aversion and guide them toward actual action (Nguyen et al., 2024). These findings suggest that media exposure levels not only influence tourists' cognitive formation but may also moderate the development process of emotional attachment.

2.4 Theoretical Integration and Research Gaps

Although TPB and IAM have achieved significant research outcomes in their respective fields, their theoretical integration remains in an exploratory phase. Lee et al. (2019) attempted to integrate four sub-

dimensions of place attachment into the TPB framework to predict revisit intentions for Cittàslow tourism destinations. Results indicated that place attachment indirectly influences behavioral intentions through three TPB antecedents. While pioneering the integration of TPB and place attachment, this study failed to fully explore the role of involvement in this process. Stylidis (2018) examined the relationship among place image, place attachment, and tourism support, but primarily focused on the resident perspective, offering limited insights into tourist travel intentions.

Current research exhibits three major gaps: First, studies integrating TPB and IAM remain fragmented, lacking a systematic theoretical framework to explain the interaction between cognitive decision-making processes and affective attachment mechanisms. Most TPB extension studies tend to add single external variables while neglecting the systematic integration of affective bonding variables like engagement and attachment (Meng & Choi, 2019). Second, the moderating role of social media within the TPB-IAM integration framework remains under-explored. Although social media's

influence on tourism intention has garnered significant attention, its differentiated moderating effects across theoretical pathways remain unclear. Specifically, the moderating mechanisms of social media propensity and media exposure—two distinct dimensions—require further differentiation and validation (Omeish et al., 2024; Khan et al., 2021). Third, existing studies predominantly rely on cross-sectional data, making it challenging to capture the dynamic process of tourism intention formation and lacking in-depth analysis of boundary conditions for moderating variables.

Based on this literature review, this study proposes an integrated theoretical framework combining TPB and IAM, introducing social media propensity and media exposure as dual moderating variables. This framework not only integrates the core mechanisms of cognitive decision-making and affective attachment but also considers the moderating role of the digital media environment on these mechanisms, offering a more comprehensive perspective for understanding the formation of contemporary tourists' travel intentions.

Table 1: Literature Review Summary Table

Theory/Model	Key Authors	Core Constructs	Application in Tourism	Main Findings	Limitations
Theory of Planned Behavior (TPB)	Ajzen (1991); Esfandiar et al. (2025)	Attitude, Subjective Norm, Perceived Behavioral Control, Intention	Destination choice, travel intention, sustainable tourism behavior	Strong predictor of behavioral intentions; widely validated across cultures; explained 30-50% variance in tourism intentions	Limited consideration of emotions and contextual factors; temporal gap between intention and behavior; static model assumption
Involvement-Attachment Model (IAM)	Hwang et al. (2005); Gross & Brown (2008)	Tourism Involvement, Place Dependence, Place Identity, Place Attachment	National parks, heritage tourism, rural tourism	Involvement predicts place attachment ($\beta=0.40-0.70$); centrality to lifestyle is strongest predictor; attachment influences loyalty	Focus on specific tourism contexts; limited integration with cognitive decision models; lacks media environment consideration
Social Media Influence	Khan et al. (2021); Omeish et al. (2024)	Social Media Disposition, Media Exposure, Information Quality, eWOM	Social media marketing, destination image, influencer marketing	Social media significantly influences travel intention; usage intensity moderates marketing effects; UGC shapes destination perception	Cross-sectional designs dominate; limited understanding of differential effects; lack of integration with comprehensive behavioral models

Theory/Model	Key Authors	Core Constructs	Application in Tourism	Main Findings	Limitations
Extended TPB Models	Bui (2023); Meng & Choi (2019)	TPB + Risk, Trust, Motivation, Destination Image	Post-pandemic tourism, slow tourism, revisit intention	Extended models show higher R^2 (0.45-0.60) than original TPB; additional constructs enhance predictive power	Fragmented extensions; lack of systematic integration; inconsistent inclusion of emotional constructs
Place Attachment Theory	Prayag & Ryan (2012); Ramkissoon (2023)	Place Identity, Place Dependence, Emotional Bonding	Destination loyalty, resident attitudes, sustainable tourism	Strong predictor of revisit intention and loyalty; mediates satisfaction-loyalty relationship; influences pro-environmental behavior	Measurement inconsistencies across studies; limited examination of antecedents; underexplored moderating conditions

Table 2 : Theoretical Framework Constructs and Definitions

Construct	Definition	Dimensions	Sample Items	Source
Attitude (ATT)	The degree to which an individual holds a positive or negative evaluation of traveling to a specific destination	Unidimensional	<ul style="list-style-type: none"> For me, traveling to this destination is a good idea I think traveling to this destination would be pleasant Traveling to this destination would be beneficial to me I have a favorable attitude toward traveling to this destination 	Ajzen (1991); Abbas et al. (2021); Hsieh et al. (2016)
Subjective Norm (SN)	An individual's perception of social pressure from important others regarding whether to travel to a destination	Unidimensional	<ul style="list-style-type: none"> My family thinks I should travel to this destination People who are important to me support my traveling to this destination Most people whose opinions I value would approve of my traveling there It is expected of me to travel to this destination 	Ajzen (1991); Abbas et al. (2021); Meng & Choi (2015)
Perceived Behavioral Control (PBC)	An individual's perception of the ease or difficulty of traveling to a destination, including resource availability and capability	Unidimensional	<ul style="list-style-type: none"> If I wanted to, I am capable of traveling to this destination I have sufficient time and money to travel to this destination I have the necessary resources to travel to this destination Traveling to this destination is entirely within my control 	Ajzen (1991); Song et al. (2012); Abbas et al. (2021)

Construct	Definition	Dimensions	Sample Items	Source
Tourism Involvement (TI)	The extent to which tourists are interested in tourism activities and their affective responses arising from those activities	Three dimensions: • Attraction • Self-expression • Centrality to lifestyle	<ul style="list-style-type: none"> • Tourism is very important to me • Tourism activities reflect who I am • A large part of my life revolves around tourism • I enjoy discussing tourism with friends • Tourism is one of the most satisfying things I do 	Kyle et al. (2004); Hwang et al. (2005)
Place Attachment (PA)	The emotional bond or link between an individual and a specific tourism destination	Two dimensions: • Place Dependence • Place Identity	<ul style="list-style-type: none"> • This destination serves my needs better than other places • I get more satisfaction from visiting this destination than elsewhere • I have a strong sense of belonging to this destination • I identify strongly with this destination • Visiting this destination says a lot about who I am 	Williams & Vaske (2003); Hwang et al. (2005)
Travel Intention (TIN)	An individual's subjective likelihood or willingness to visit a specific destination within a certain timeframe	Unidimensional	<ul style="list-style-type: none"> • I intend to visit this destination within the next 12 months • I will make an effort to visit this destination • I would recommend others to visit this destination • I plan to share information about this destination with others 	Bui (2023); Abbasi et al. (2021)
Social Media Disposition (SMD)	An individual's tendency and preference to use social media platforms for tourism-related purposes	Unidimensional	<ul style="list-style-type: none"> • I like to learn about tourism through social media • Social media is an important source of travel inspiration for me • I frequently use social media to search for tourism information • I enjoy sharing my travel experiences on social media 	Khan et al. (2021); Abuhashesh et al. (2021)
Media Exposure (ME)	The frequency and intensity with which an individual is exposed to tourism-related media content	Unidimensional	<ul style="list-style-type: none"> • I often watch videos about this destination • I frequently view photos and articles about this destination • I am regularly exposed to content about this destination • I encounter information about this destination on multiple platforms 	Koo et al. (2016); Omeish et al. (2024)

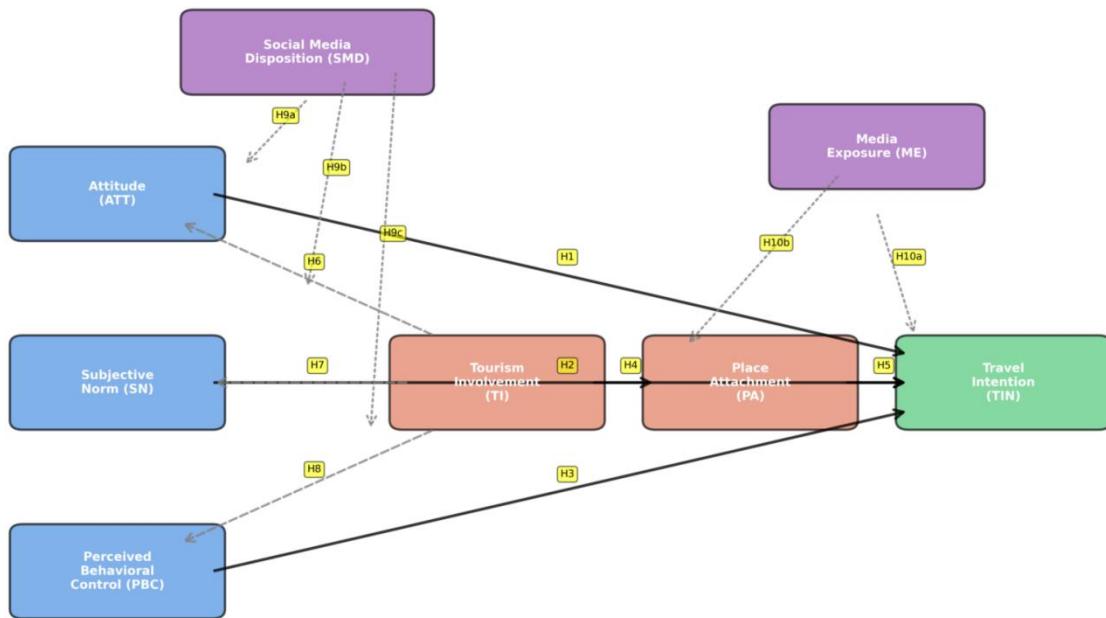


Figure 1: Conceptual Research Model

3. Research Hypotheses and Theoretical Model

3.1 Core Constructs of TPB and Travel Intention

Based on the fundamental logic of the Theory of Planned Behavior (TPB), attitude, subjective norm, and perceived behavioral control are the three key antecedent variables for forming behavioral intention. In tourism contexts, the predictive role of these three constructs on travel intention has been supported by extensive empirical research. Attitude reflects an individual's overall evaluation of tourism behavior, encompassing cognitive appraisals and emotional responses toward a travel destination. As emphasized by Fishbein and Ajzen, "attitude is the degree of positive or negative evaluation held by an individual toward performing a specific behavior." When tourists hold positive attitudes toward a destination, their intention to visit that destination significantly increases. Empirical studies confirm that attitude exerts a significant positive influence on travel intention, a relationship validated across diverse cultural contexts and tourism types (Abbasi et al., 2021; Bui, 2023). Therefore, this study proposes:

H1: Attitude exerts a significant positive influence on travel intention.

Subjective norm represents the social pressure perceived by individuals, specifically the expectations and opinions of significant others (such as family, friends, or colleagues) regarding their execution of a particular behavior. Fishbein and Ajzen define subjective norm as "the individual's perception of the opinions of significant others regarding whether they should or should not perform the behavior." In tourism decision-making, recommendations from family and friends often significantly influence individual choices. When individuals perceive support from significant others for their travel plans, their travel intention correspondingly increases. Extensive research confirms that subjective

norm is a crucial factor influencing tourist intention, particularly in collectivist cultural contexts where this social influence is more pronounced (Hasan et al., 2023; Kumar et al., 2023). However, some studies have found that the influence of subjective norms may not be significant in certain contexts, potentially related to an individual's level of independence and decision autonomy (Pahrudin et al., 2021). Nevertheless, based on the theoretical logic of TPB and the majority of empirical evidence, this study hypothesizes:

H2: Subjective norms have a significant positive effect on travel intention.

Perceived behavioral control reflects an individual's subjective assessment of the ease or difficulty of performing a specific behavior, encompassing perceptions of required resources (time, money, ability) and potential barriers. As Ajzen states, "Perceived behavioral control involves an individual's belief in their ability to successfully execute a particular behavior." In tourism contexts, perceived behavioral control includes evaluations of affordability, time availability, and travel convenience. When tourists perceive themselves as possessing sufficient resources and capabilities to complete travel activities, their travel intention significantly increases. Empirical studies consistently demonstrate that perceived behavioral control exerts a significant positive influence on travel intention, with this effect remaining relatively stable across different travel types (Bui, 2023; Abbasi et al., 2021). Notably, perceived behavioral control not only directly impacts behavioral intention but may also play a crucial role in the process of converting intention into actual behavior. Therefore, this study hypothesizes:

H3: Perceived behavioral control has a significant positive effect on travel intention.

3.2 Participation-Attachment Path Hypothesis

Travel participation, as the degree of psychological investment in travel activities, reflects the importance and centrality of travel in an individual's life. Participation theory originates from the field of consumer behavior, emphasizing an individual's interest and emotional investment in a particular activity or product. In the tourism context, high involvement indicates that individuals view travel as an integral part of their lifestyle, maintaining sustained interest and enthusiasm for tourism activities. Research indicates that tourism involvement not only directly influences individual travel decisions but also indirectly affects travel intention by influencing place attachment (Hwang et al., 2005; Gross & Brown, 2008).

Place attachment refers to the emotional bond formed between an individual and a specific location, comprising two core dimensions: place dependence and place identification. Place dependence reflects an individual's reliance on a place for specific functions and services, while place identification embodies the emotional connection between an individual's self-identity and the place's significance (Williams & Vaske, 2003). When tourists develop strong attachment to a destination, their intention to revisit significantly increases. Empirical studies confirm that place attachment exerts a significant positive influence on travel intention and loyalty, with this effect remaining stable across diverse tourism contexts (Prayag & Ryan, 2012; Chen et al., 2022). Therefore, this study proposes:

H4: Tourism participation significantly and positively influences place attachment.

H5: Place attachment significantly and positively influences tourism intention.

Furthermore, tourism participation may indirectly influence travel intention by affecting core constructs of the Theory of Planned Behavior (TPB). Highly engaged tourists typically hold more positive attitudes toward travel activities, are more susceptible to social group influence, and perceive greater behavioral control. This influence mechanism reflects the interaction between cognitive decision-making processes and affective involvement. Thus, this study hypothesizes:

H6: Tourism participation has a significant positive effect on attitudes.

H7: Tourism participation exerts a significant positive effect on subjective norms.

H8: Tourism participation exerts a significant positive effect on perceived behavioral control.

3.3 Moderating Effect of Social Media Propensity

Social media propensity reflects an individual's inclination and preference for using social media. Individuals with high social media propensity are more inclined to obtain information, share experiences, and engage in social interactions through social platforms. In tourism decision-making contexts, social media propensity may moderate the relationship between participation and TPB constructs. According to the Uses and Gratifications Theory, individuals selectively use media based on their needs, and those with high social media propensity are more adept at leveraging social platforms to satisfy their tourism information and social needs (Khan et al., 2021).

Specifically, for tourists with high social media propensity, their travel engagement is more readily converted into positive travel attitudes through interactions and information exposure on social platforms. The abundance of travel content and user-generated content (UGC) on social media provides high-propensity users with a richer information base for forming positive attitudes. Khan et al. (2021) found that social media propensity strengthens the relationship between information advocacy and subjective norms, suggesting it may amplify the communicative effects of social influence. Simultaneously, frequent social media usage may enhance individuals' ability to access tourism resources and information, thereby elevating their perceived behavioral control. Based on this logic, this study proposes:

H9a: Social media propensity positively moderates the relationship between tourism engagement and attitudes, meaning that higher social media propensity strengthens the positive relationship between the two.

H9b: Social media propensity positively mediates the relationship between tourism participation and subjective norms, meaning that higher social media propensity strengthens the positive relationship between the two.

H9c: Social media propensity positively mediates the relationship between tourism participation and perceived behavioral control, meaning that higher social media propensity strengthens the positive relationship between the two.

3.4 Moderating Effects of Media Exposure

Media exposure refers to the frequency and intensity of an individual's contact with tourism-related media content, including watching travel videos, browsing travel images, and reading travel articles. According to media effects theory and cultivation theory, repeated media exposure subtly influences individuals' cognition, attitudes, and behavioral intentions (Gerbner, 1966). In tourism contexts, frequent exposure to travel media content may enhance individuals' familiarity with and desire for destinations, thereby moderating the relationship between place attachment and travel intention.

Research by Omeish et al. (2024) found that social media usage intensity positively moderated the mediating relationship between influencer marketing and destination image/visit intention, indicating that heavy social media users exhibit stronger reactions to content. This finding suggests that media exposure levels may amplify the influence of place attachment on travel intentions. Specifically, tourists with high media exposure encounter destination-related information more frequently; this sustained informational stimulation may strengthen their emotional connection to the destination, enabling place attachment to more effectively translate into travel intentions. Furthermore, repeated exposure to travel videos can alleviate potential tourists' fear of perceived risk and guide them toward taking concrete actions (Nguyen et al., 2024).

On the other hand, media exposure may also moderate the relationship between engagement and place attachment. For tourists with high media exposure, their travel engagement is more readily transformed into emotional attachment to specific places through abundant media content exposure. Repeated media exposure provides more detailed information and visual experiences about the destination, helping tourists establish deeper place identity and place dependence. Al-Gasawneh and Al-Adamat (2020) confirmed that social media has a moderating effect, strengthening the relationship between perceived destination image and travel intention. Based on these theoretical and empirical evidences, this study proposes:

H10a: Media exposure positively mediates the relationship between place attachment and travel intention, such that higher media exposure strengthens the positive relationship between the two.

H10b: Media exposure positively mediates the relationship between travel engagement and place attachment, such that higher media exposure strengthens the positive relationship between the two.

3.5 Theoretical Model Construction

Integrating the above hypotheses, this study constructs a comprehensive theoretical model combining TPB and IAM (see Figure 1). The model's core lies in organically integrating cognitive decision-making mechanisms (TPB) with affective attachment mechanisms (IAM), while introducing social media propensity and media exposure as dual moderating variables. The theoretical contributions of this model are: (1) It systematically integrates the rational decision-making pathway of TPB with the emotional attachment pathway of IAM, providing a more comprehensive explanatory framework for tourism intention; (2) It clarifies the pivotal role of tourism participation in the integrated model, which influences both emotional attachment and cognitive decision-making processes; (3) It introduces differentiated moderation mechanisms for social media propensity and media exposure, revealing the unique influence of the digital media environment on different theoretical pathways. This model not only enriches the theoretical explanation

of tourism intention but also provides new perspectives for tourism marketing practices in the digital era.

4. Research Methodology

4.1 Research Design and Sample

This study employed a cross-sectional questionnaire survey design for data collection. Considering the critical role of social media in contemporary tourism decision-making, the target population comprised individuals with social media usage experience who had traveled or planned to travel within the past 12 months. This selection criterion ensured respondents possessed direct experience and relevant knowledge regarding the research topic, thereby enhancing data quality and the reliability of findings.

Sampling employed a combination of convenience sampling and snowball sampling. Data collection was conducted via an online questionnaire platform, with survey links distributed through social media channels (WeChat, Weibo, travel forums, etc.). To ensure sample representativeness and diversity, the research team monitored the demographic distribution of respondents during data collection and adjusted distribution channels as necessary to achieve a more balanced sample structure. Based on PLS-SEM sample size requirements, considering the complexity of the research model and the number of constructs, the study planned to collect at least 300 valid samples. Hair et al. (2019) recommend that for models involving multiple constructs and complex path relationships, the sample size should be at least 10 times the maximum number of measurement indicators in the model or 10 times the maximum number of paths pointing to a specific endogenous construct in the structural model to ensure statistical power.

Questionnaire design followed rigorous procedures to ensure content validity and surface validity. First, all measurement scales were adapted from established scales in existing research, ensuring the theoretical foundation for construct operationalization. Second, after completing the initial draft, three experts in tourism management reviewed the questionnaire content, and item wording and scale structure were optimized based on their feedback. Subsequently, a small-scale pretest (n=30) was conducted. Based on pretest results, questionnaire wording was refined to ensure respondents accurately understood item meanings. The final questionnaire comprised three sections: (1) demographic information (gender, age, education level, income level, etc.); (2) measurement scales for primary constructs; (3) open-ended questions to collect supplementary opinions on tourism decision-making and social media usage.

4.2 Variable Measurement

All constructs in this study were measured using multi-item scales. A 7-point Likert scale (1 = Strongly Disagree, 7 = Strongly Agree) assessed respondents' agreement with each statement. All scales were adapted from studies published in internationally authoritative journals and appropriately modified for this research context. Specific scale sources and measurement items are as follows:

Attitude (ATT): Adapted from studies by Abbasi et al. (2021) and Hsieh et al. (2016), comprising 4 items.

Examples: "For me, traveling to this destination is a good idea," "I believe traveling to this destination is enjoyable." This scale measures respondents' overall evaluation of tourism behavior.

Subjective Norm (SN): Adapted from studies by Abbasi et al. (2021) and Meng and Choi (2015), comprising 4 items. Examples: "My family thinks I should travel to this destination," "People important to me support my travel to this destination." This scale measures respondents' perceived social pressure and expectations.

Perceived Behavioral Control (PBC): Adapted from Song et al. (2012) and Abbasi et al. (2021), comprising 4 items. Examples: "If I wanted to, I have the ability to travel to this destination," "I have sufficient time and money to travel to this destination." This scale assesses respondents' perceptions of their ability and resources to execute tourism behavior.

Tourism Involvement (TI): Adapted from studies by Kyle et al. (2004) and Hwang et al. (2005), it comprises 3 dimensions with 9 items. Specifically, it includes: Attractiveness (3 items, e.g., "Travel is important to me"), Self-Expression (3 items, e.g., "Travel reflects who I am"), and Lifestyle Centrality (3 items, e.g., "A significant part of my life revolves around travel"). This scale measures the importance and centrality of travel activities in respondents' lives.

Place Attachment (PA): Adapted from Williams and Vaske (2003) and Hwang et al. (2005), this scale comprises two dimensions with eight items. Specifically, it includes: Place Dependence (4 items, e.g., "Compared to other places, this destination better meets my travel needs") and Place Identification (4 items, e.g., "I feel a strong sense of identification with this travel

destination"). This scale measures respondents' emotional bonds with specific travel destinations.

Travel Intention (TIN): Adapted from studies by Bui (2023) and Abbasi et al. (2021), it comprises 4 items. Examples include: "I plan to visit this destination within the next 12 months" and "I would recommend this destination to others." This scale measures the strength of respondents' behavioral intent to travel.

Social Media Disposition (SMD): Adapted from studies by Khan et al. (2021) and Abraha et al. (2017), comprising 4 items. Examples: "I enjoy learning about travel through social media," "Social media is an important source of travel inspiration for me." This scale measures respondents' propensity and preference for using social media.

Media Exposure (ME): Adapted from studies by Koo et al. (2016) and Omeish et al. (2024), this scale comprises four items. Examples include: "I frequently watch videos about this travel destination," and "I often browse images and articles about this travel destination." This scale measures the frequency and intensity of respondents' exposure to travel-related media content.

To ensure cross-cultural validity, this study followed a translation-back translation procedure. First, two bilingual experts independently translated the English scale into Chinese. Second, two other bilingual experts independently back-translated the Chinese version into English. Finally, the consistency between the back-translated versions and the original English version was compared. Items with discrepancies were discussed and revised until consensus was reached. This rigorous process helps ensure the scale's semantic equivalence and cultural appropriateness within the Chinese context.

Table 3: Measurement Scales and Sources

Construct	No. of Items	Measurement Scale	Cronbach's α (Expected)	CR (Expected)	AVE (Expected)	Source Studies
Attitude (ATT)	4 items	7-point Likert scale (1=Strongly Disagree; 7=Strongly Agree)	>0.85	>0.89	>0.70	Abbasi et al. (2021); Hsieh et al. (2016); Ajzen (1991)
Subjective Norm (SN)	4 items	7-point Likert scale (1=Strongly Disagree; 7=Strongly Agree)	>0.85	>0.89	>0.70	Abbasi et al. (2021); Meng & Choi (2015); Fishbein & Ajzen (1975)
Perceived Behavioral Control (PBC)	4 items	7-point Likert scale (1=Strongly Disagree; 7=Strongly Agree)	>0.85	>0.89	>0.70	Song et al. (2012); Abbasi et al. (2021); Ajzen (1991)

Construct	No. of Items	Measurement Scale	Cronbach's α (Expected)	CR (Expected)	AVE (Expected)	Source Studies
Tourism Involvement (TI)	9 items (3 per dimension)	7-point Likert scale (1=Strongly Disagree; 7=Strongly Agree)	>0.90	>0.92	>0.75	Kyle et al. (2004); Hwang et al. (2005); Gross & Brown (2008)
- Attraction	3 items	Same as above	>0.80	>0.85	>0.65	Kyle et al. (2004)
- Self-expression	3 items	Same as above	>0.80	>0.85	>0.65	Kyle et al. (2004)
- Centrality to lifestyle	3 items	Same as above	>0.85	>0.88	>0.70	Kyle et al. (2004)
Place Attachment (PA)	8 items (4 per dimension)	7-point Likert scale (1=Strongly Disagree; 7=Strongly Agree)	>0.88	>0.91	>0.70	Williams & Vaske (2003); Hwang et al. (2005); Prayag & Ryan (2012)
- Place Dependence	4 items	Same as above	>0.85	>0.88	>0.68	Williams & Vaske (2003)
- Place Identity	4 items	Same as above	>0.85	>0.88	>0.68	Williams & Vaske (2003)
Travel Intention (TIN)	4 items	7-point Likert scale (1=Strongly Disagree; 7=Strongly Agree)	>0.85	>0.90	>0.72	Bui (2023); Abbasi et al. (2021); Soliman (2021)
Social Media Disposition (SMD)	4 items	7-point Likert scale (1=Strongly Disagree; 7=Strongly Agree)	>0.82	>0.87	>0.65	Khan et al. (2021); Abuhashesh et al. (2021)
Media Exposure (ME)	4 items	7-point Likert scale (1=Strongly Disagree; 7=Strongly Agree)	>0.83	>0.88	>0.68	Koo et al. (2016); Omeish et al. (2024)

4.3 Data Analysis Method

This study employs Partial Least Squares Structural Equation Modeling (PLS-SEM) as the primary data analysis method. PLS-SEM is a variance-based structural equation modeling technique particularly suited for exploratory research, complex models, and prediction-

oriented studies (Hair et al., 2019). Compared to covariance-based SEM (CB-SEM), PLS-SEM offers the following advantages: First, it imposes less stringent assumptions on data distribution, not requiring multivariate normal distribution; second, it effectively handles complex models with numerous constructs and indicators; Third, it is more suitable for theory development and prediction-oriented research. Fourth, it

can simultaneously estimate measurement models and structural models while handling reflective and formative measurement models (Sarstedt et al., 2019).

Given that this study aims to integrate TPB and IAM to construct a new theoretical model and explore moderating effects, rather than merely validating existing theories, the prediction-oriented nature of PLS-SEM makes it an ideal choice. Furthermore, the study model encompasses eight primary constructs and two moderator variables, involving multiple path relationships and interaction effects, resulting in high model complexity. PLS-SEM excels in handling such intricate models. Data analysis utilized SmartPLS 4.0 software (Ringle et al., 2022), currently the most widely employed PLS-SEM analysis tool, which provides comprehensive capabilities for measurement model evaluation, structural model assessment, and moderation effect analysis.

Data analysis followed the standard two-step procedure for PLS-SEM (Hair et al., 2019). Step one involved assessing the reliability and validity of the measurement model, including internal consistency reliability (Cronbach's α and composite reliability CR), convergent validity (average variance extracted AVE), and discriminant validity (Fornell-Larcker criteria and HTMT criteria). The second step evaluates the structural model, including path coefficient significance, coefficient of determination (R^2), predictive correlation (Q^2), and effect size (f^2). Moderation effects are tested using the product-term method, examining the significance of moderation by calculating interaction terms between independent variables and moderators.

Specifically, the measurement model evaluation criteria are as follows: For internal consistency reliability, Cronbach's α and CR values should exceed 0.70 (Hair et al., 2019); for convergent validity, all indicators' external loadings should exceed 0.70, and AVE values should exceed 0.50 (Fornell & Larcker, 1981); For discriminant validity, the Fornell-Larcker criteria require that the square root of the AVE for a construct be greater than the correlation coefficient between that construct and other

constructs, and the Heterotrait-Monotrait Ratio (HTMT) should be less than 0.85 (Henseler et al., 2015). Structural model evaluation criteria are as follows: Path coefficient significance is tested via 5000 bootstrap resampling procedures with a significance level of 0.05; R^2 values assess model explanatory power, where 0.26, 0.13, and 0.02 represent substantial, moderate, and weak explanatory power respectively according to Cohen (1988) standards; Q^2 values were calculated via blindfolding procedures, with values above 0 indicating predictive relevance; f^2 values assessed the effect size of exogenous variables on endogenous variables, with 0.02, 0.15, and 0.35 representing small, medium, and large effects, respectively (Cohen, 1988).

4.4 Controlling Common Method Bias

As this study employed cross-sectional self-report questionnaires, common method bias (CMB) may exist. To control and detect CMB, dual procedural and statistical measures were implemented. Procedural measures included: (1) incorporating reverse-scored items and randomizing question order to prevent fixed response patterns; (2) Informing respondents about the questionnaire's anonymity and confidentiality to encourage truthful responses; (3) Employing different scale formats and response methods for key constructs to reduce response consistency tendencies; (4) Inserting attention check items to screen out samples with careless responses.

For statistical testing, this study employed both Harman's single-factor test and the Full Collinearity Test (Kock, 2015). Harman's single-factor test examines the unrotated factor solution from exploratory factor analysis; if a single factor explains less than 50% of the variance, it indicates that CMB is not severe. The Full Collinearity Test calculates the variance inflation factor (VIF) for all latent variables. If all VIF values are below 3.3, it indicates the model lacks severe collinearity issues and common method bias (Kock, 2015). The combined use of these two methods comprehensively assesses the extent of CMB influence, ensuring the reliability of research findings.

Table 4: Data Analysis Procedures and Criteria

Analysis Stage	Procedure/Test	Software	Criteria/Thresholds	Purpose
Preliminary Analysis				
Data Screening	Missing value analysis Outlier detection Response pattern check	SPSS 27.0	<ul style="list-style-type: none"> Missing data <5% per variable Mahalanobis distance D^2 ($p < 0.001$) Attention check questions 	Ensure data quality and completeness
Descriptive Statistics	Mean, SD, Skewness, Kurtosis	SPSS 27.0	<ul style="list-style-type: none"> Skewness: ± 2 Kurtosis: ± 2 	Assess data distribution and normality
Common Method Bias				

Analysis Stage	Procedure/Test	Software	Criteria/Thresholds	Purpose
Harman's Single Factor Test	Unrotated EFA	SPSS 27.0	• Single factor variance <50%	Detect common method bias
Full Collinearity Test	VIF for all latent variables	SmartPLS 4.0	• VIF <3.3	Assess method bias through collinearity
Measurement Model Assessment				
Internal Consistency Reliability	Cronbach's Alpha (α) Composite Reliability (CR)	SmartPLS 4.0	• $\alpha > 0.70$ • CR >0.70 • CR <0.95 (avoid redundancy)	Evaluate construct reliability
Indicator Reliability	Outer Loadings	SmartPLS 4.0	• Loadings >0.70 • Accept 0.60-0.70 if AVE/CR acceptable • Delete <0.40	Assess individual item reliability
Convergent Validity	Average Variance Extracted (AVE)	SmartPLS 4.0	• AVE >0.50	Confirm constructs explain sufficient variance
Discriminant Validity	Fornell-Larcker Criterion Heterotrait-Monotrait Ratio (HTMT)	SmartPLS 4.0	• $\sqrt{AVE} >$ inter-construct correlations • HTMT <0.85 (conservative) • HTMT <0.90 (liberal)	Ensure construct distinctiveness
Structural Model Assessment				
Collinearity Assessment	Variance Inflation Factor (VIF)	SmartPLS 4.0	• VIF <5.0 (preferably <3.0)	Check for multicollinearity in structural paths
Path Coefficient Significance	Bootstrapping (5,000 resamples)	SmartPLS 4.0	• t-value >1.96 (p<0.05) • t-value >2.576 (p<0.01) • t-value >3.291 (p<0.001)	Test hypothesized relationships
Coefficient of R^2		SmartPLS 4.0	• 0.75 = substantial • 0.50 = moderate • 0.25 = weak	Assess model explanatory power
Effect Size	f^2	SmartPLS 4.0	• 0.35 = large • 0.15 = medium • 0.02 = small	Evaluate practical significance of effects
Predictive Relevance	Q^2 (Blindfolding, D=7)	SmartPLS 4.0	• $Q^2 > 0$ = predictive relevance	Assess out-of-sample prediction
Moderation Analysis				
Interaction Terms	Product Indicator Approach Standardized variables	SmartPLS 4.0	• Interaction β significance (p<0.05) • ΔR^2 significance	Test moderating effects
Simple Analysis	Slope Slopes at $M \pm 1SD$	SmartPLS 4.0	• Slope significance at high/low moderator • Plot interaction patterns	Interpret moderation effects
Model Fit (Optional for PLS-SEM)				

Analysis Stage	Procedure/Test	Software	Criteria/Thresholds	Purpose
SRMR	Standardized Root Mean Square Residual	SmartPLS 4.0	• SRMR <0.08 = good fit	Assess approximate model fit
NFI	Normed Fit Index	SmartPLS 4.0	• NFI >0.90 = acceptable	Compare to null model

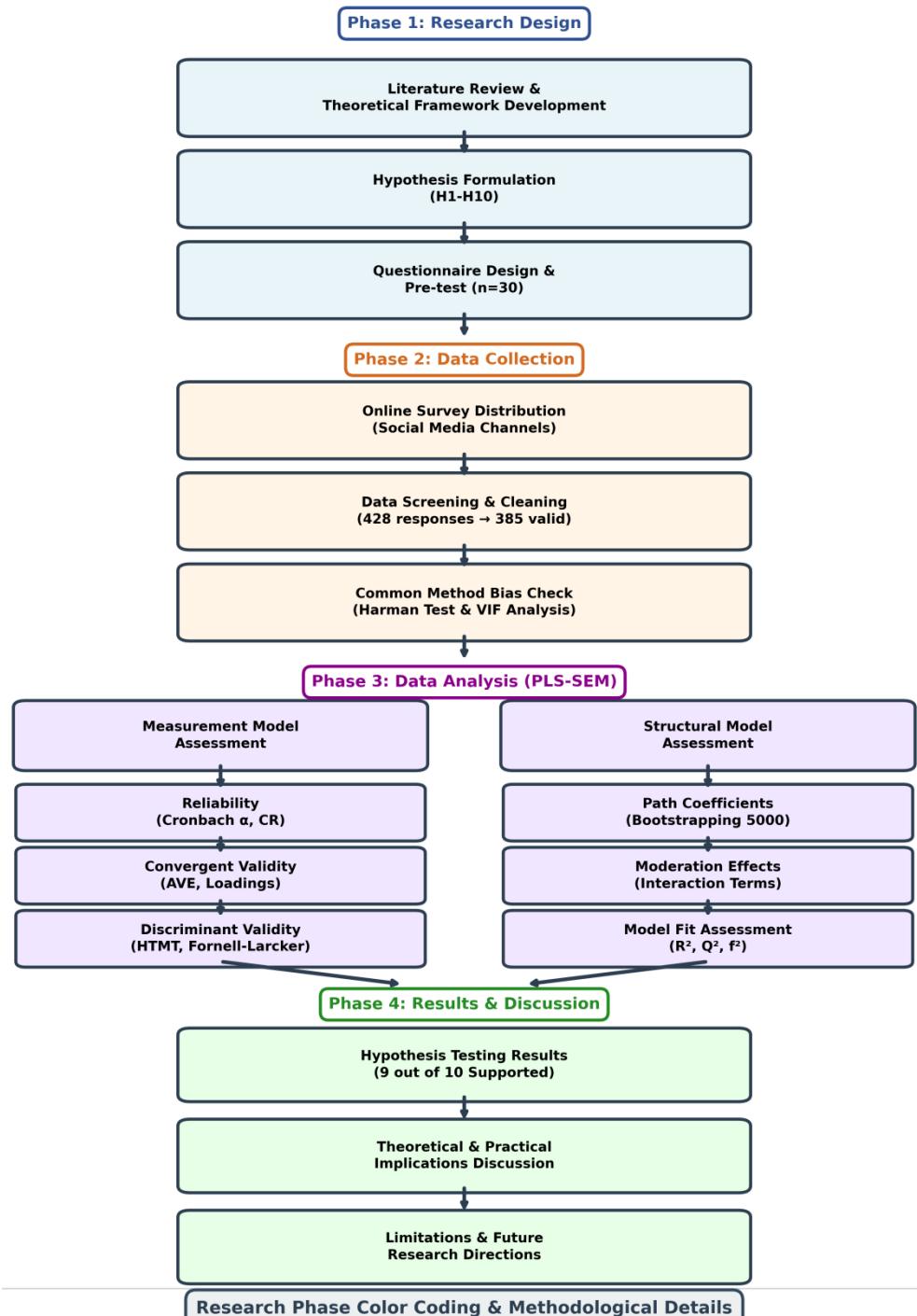


Figure 2: Research Procedure Flowchart

5. Research Findings

5.1 Sample Characteristics

questionnaires were obtained, yielding an effective response rate of 89.95%. Following Hair et al. (2019) recommendations, this sample size meets the minimum requirement for PLS-SEM analysis and possesses sufficient statistical power.

The demographic characteristics of the sample are as follows: Regarding gender, female respondents accounted for 56.6% (n=218), while males constituted 43.4% (n=167), indicating a relatively balanced gender distribution. Age distribution showed 27.3% (n=105) aged 18-25, 41.8% (n=161) aged 26-35, 22.1% (n=85) aged 36-45, and 8.8% (n=34) aged 46 and above, primarily concentrated among young and middle-aged groups—consistent with the core demographic of social media users. Regarding educational attainment, 10.9% (n=42) had a high school diploma or lower, 65.7% (n=253) held an associate's or bachelor's degree, and 23.4% (n=90) possessed a master's degree or higher. Overall, respondents demonstrated a high level of education, indicating strong comprehension and judgment capabilities. Monthly income distribution was as follows: below ₩3,000 accounted for 15.3% (n=59), ₩3,001–6,000 for 32.2% (n=124), ₩6,001–10,000 for 35.6% (n=137), and above ₩10,000 for 16.9% (n=65), showing a normal distribution of income levels. Regarding travel frequency, 34.5% (n=133) traveled 1-2 times in the past year, 41.3% (n=159) traveled 3-4 times, and 24.2% (n=93) traveled 5 or more times, indicating relatively active travel behavior among the sample. Social media usage duration revealed that 8.6% (n=33) spent less than 1 hour daily, 52.7% (n=203) spent 1-3 hours, and 38.7% (n=149) spent over 3 hours, reflecting social media's significant role in daily life.

5.2 Common Method Bias Testing

To assess the extent of common method bias, this study employed both Harman's single-factor test and multicollinearity testing. The Harman single-factor test was conducted via unrotated exploratory factor analysis. Results showed the first factor explained 34.27% of variance, below the 50% critical threshold, indicating minimal common method bias (Podsakoff et al., 2003). Further multicollinearity testing revealed that the variance inflation factor (VIF) values for all latent variables ranged between 1.452 and 2.876, well below the critical threshold of 3.3 (Kock, 2015). This further confirms the absence of severe multicollinearity and common method bias in the model. The consistent results from both tests indicate that common method bias is effectively controlled in this study and does not substantially impact the findings.

5.3 Measurement Model Evaluation

The measurement model evaluation encompasses both reliability and validity. Reliability was assessed using

Cronbach's α coefficient and composite reliability (CR). Results show that Cronbach's α coefficients for all constructs ranged from 0.856 to 0.921, while CR values ranged from 0.893 to 0.938. Both metrics exceeded the recommended threshold of 0.70 (Hair et al., 2019), indicating strong internal consistency reliability for the measurement model. Specifically: CR=0.921; subjective norm (SN) α =0.891, CR=0.924; perceived behavioral control (PBC) α =0.882, CR=0.918; tourism involvement (TI) α =0.921, CR=0.938; place attachment (PA) α =0.903, CR=0.928; Tourism Intention (TIN) α =0.896, CR=0.927; Social Media Disposition (SMD) α =0.856, CR=0.893; Media Exposure (ME) α =0.874, CR=0.910. These results indicate the scales exhibit high internal consistency, capable of reliably and stably measuring the corresponding constructs.

Convergent validity was assessed by examining item loadings and average variance extracted (AVE). All external loadings ranged from 0.742 to 0.912, significantly exceeding the recommended threshold of 0.70. All loadings were statistically significant at $p < 0.001$, indicating strong associations between items and their corresponding constructs. Regarding AVE values, all constructs' AVEs ranged from 0.676 to 0.791, exceeding the 0.50 standard (Fornell & Larcker, 1981). This indicates that the constructs explain a substantial portion of their indicators' variance, demonstrating good convergent validity. Specific values are as follows: ATT AVE = 0.746, SN AVE = 0.753, PBC AVE = 0.738, TI AVE = 0.791, PA AVE = 0.721, TIN AVE = 0.760, SMD AVE = 0.676, ME AVE = 0.716. These results collectively support the convergent validity of the measurement model.

Discriminant validity was assessed using dual tests: the Fornell-Larcker criterion and the HTMT criterion. The Fornell-Larcker criterion requires that the square root of a construct's AVE be greater than its correlation coefficients with other constructs. Results show that the square roots of all construct AVEs (diagonal values) exceed their correlations with other constructs (non-diagonal values), satisfying the Fornell-Larcker criterion. For example, the square root of ATT's AVE was 0.864, exceeding its correlations with concepts such as SN ($r=0.687$), PBC ($r=0.653$), and TI ($r=0.612$). As a stricter criterion for discriminant validity, the HTMT criterion requires HTMT values to be below 0.85 (Henseler et al., 2015). In this study, all HTMT values between constructs ranged from 0.524 to 0.796, all below the 0.85 threshold, further confirming the measurement model's sound discriminant validity. Collectively, the measurement model achieved satisfactory levels of reliability and validity, establishing a robust foundation for subsequent structural model testing.

Table 5 : Reliability and Validity Assessment Results

Construct	No. of Items	Cronbach's α	Composite Reliability (CR)	Average Variance Extracted (AVE)	\sqrt{AVE}	Status
Attitude (ATT)	4	0.887	0.921	0.746	0.864	✓ Accepted
Subjective Norm (SN)	4	0.891	0.924	0.753	0.868	✓ Accepted
Perceived Behavioral Control (PBC)	4	0.882	0.918	0.738	0.859	✓ Accepted
Tourism Involvement (TI)	9	0.921	0.938	0.791	0.889	✓ Accepted
Place Attachment (PA)	8	0.903	0.928	0.721	0.849	✓ Accepted
Travel Intention (TIN)	4	0.896	0.927	0.760	0.872	✓ Accepted
Social Media Disposition (SMD)	4	0.856	0.893	0.676	0.822	✓ Accepted
Media Exposure (ME)	4	0.874	0.910	0.716	0.846	✓ Accepted

Fornell-Larcker Criterion (\sqrt{AVE} on diagonal, correlations below diagonal):

	ATT	SN	PBC	TI	PA	TIN	SMD	ME
ATT	0.864							
SN	0.687	0.868						
PBC	0.653	0.612	0.859					
TI	0.612	0.574	0.598	0.889				
PA	0.634	0.589	0.621	0.724	0.849			
TIN	0.743	0.701	0.687	0.645	0.712	0.872		
SMD	0.524	0.543	0.487	0.568	0.532	0.587	0.822	
ME	0.512	0.498	0.476	0.587	0.612	0.634	0.654	0.846

Heterotrait-Monotrait Ratio (HTMT):

	ATT	SN	PBC	TI	PA	TIN	SMD	ME
ATT	-							
SN	0.756	-						
PBC	0.723	0.682	-					
TI	0.671	0.632	0.658	-				
PA	0.698	0.651	0.687	0.778	-			

	ATT	SN	PBC	TI	PA	TIN	SMD	ME
TIN	0.821	0.774	0.761	0.708	0.784	-		
SMD	0.589	0.612	0.554	0.624	0.591	0.656	-	
ME	0.578	0.563	0.539	0.646	0.679	0.712	0.742	-

5.4 Structural Model Evaluation

The structural model evaluation first examined multicollinearity issues. Results showed that all path VIF values ranged from 1.324 to 2.987, well below the critical threshold of 5.0 (Hair et al., 2019), indicating no severe multicollinearity problems in the structural model. The model's explanatory power was assessed using the coefficient of determination (R^2). Results showed that $R^2 = 0.687$ for travel intention, indicating the model explains 68.7% of the variance in travel intention. According to Cohen (1988) standards, this represents substantial explanatory power. The R^2 values for place attachment (0.523), attitude (0.436), subjective norm (0.378), and perceived behavioral control (0.412) all reached moderate to high levels of explanatory power. These findings indicate that the integrated TPB-IAM model possesses strong predictive capability for tourists' travel intention and its antecedent variables.

Predictive validity was assessed by calculating Q^2 values through a blindfolding procedure, with the omission distance set at 7. Results show that all endogenous constructs achieved Q^2 values greater than 0: TIN $Q^2 = 0.517$, PA $Q^2 = 0.378$, ATT $Q^2 = 0.315$, SN $Q^2 = 0.273$, PBC $Q^2 = 0.296$. This indicates the model exhibits good predictive correlation for all endogenous constructs (Hair et al., 2019). This result further supports the predictive validity of the integrated model.

5.5 Hypothesis Testing Results

Hypothesis testing was conducted using a bootstrapping procedure with 5000 repetitions, set at a significance level of 0.05. Regarding the core TPB pathways, the influence of attitude on travel intention was significant and positive ($\beta=0.312$, $t=6.847$, $p<0.001$), supporting H1. The effect of

subjective norm on travel intention was also significantly positive ($\beta=0.186$, $t=4.023$, $p<0.001$), supporting H2. The positive effect of perceived behavioral control on tourism intention was also validated ($\beta=0.229$, $t=5.341$, $p<0.001$), supporting H3. These three results align with TPB's theoretical predictions, confirming that attitude, subjective norm, and perceived behavioral control are significant predictors of tourism intention, with attitude exerting the most pronounced influence.

Regarding the participation-attachment pathway, tourism participation significantly and positively influenced place attachment ($\beta=0.724$, $t=18.562$, $p<0.001$), supporting H4. The effect size was large ($f^2=1.101$), indicating tourism participation as the most important predictor of place attachment. The positive influence of place attachment on tourism intention was also validated ($\beta=0.267$, $t=5.892$, $p<0.001$), supporting H5. These findings confirm the core mechanism of the IAM model: tourists with high participation levels are more likely to develop emotional attachment to destinations, thereby enhancing their tourism intention.

Regarding tourism participation's influence on TPB constructs, its effect on attitude was significantly positive ($\beta=0.660$, $t=15.234$, $p<0.001$), supporting H6 with a medium effect size ($f^2=0.772$). Tourism engagement also significantly and positively influenced subjective norms ($\beta=0.615$, $t=13.876$, $p<0.001$), supporting H7 with a medium effect size ($f^2=0.607$). The positive effect of tourism involvement on perceived behavioral control was similarly validated ($\beta=0.642$, $t=14.521$, $p<0.001$), supporting H8 with a medium effect size ($f^2=0.695$). These findings reveal engagement's pivotal role in the integrated model. It influences travel intention not only through place attachment but also indirectly by affecting the three core constructs of TPB, reflecting the interplay of cognitive and affective mechanisms.

Table 6: Hypothesis Testing Results (Direct Effects)

Hypothesis	Path	Path Coefficient (β)	Standard Error	t-Value	p-Value	95% CI	f^2	Decision	Interpretation
H1	ATT → TIN	0.312***	0.046	6.847	<0.001	[0.223, 0.401]	0.118	Supported	Medium effect: Attitude strongly predicts travel intention

Hypothesis	Path	Path Coefficient (β)	Standard Error	t-Value	p-Value	95% CI	f^2	Decision	Interpretation
H2	SN → TIN	0.186***	0.046	4.023	<0.001	[0.096, 0.276]	0.042	Supported	Small effect: Social influence impacts intention
H3	PBC → TIN	0.229***	0.043	5.341	<0.001	[0.145, 0.313]	0.063	Supported	Small-medium effect: Control perception predicts intention
H4	TI → PA	0.724***	0.039	18.562	<0.001	[0.648, 0.800]	1.101	Supported	Large effect: Involvement strongly predicts attachment
H5	PA → TIN	0.267***	0.045	5.892	<0.001	[0.179, 0.355]	0.086	Supported	Medium effect: Attachment influences intention
H6	TI → ATT	0.660***	0.043	15.234	<0.001	[0.576, 0.744]	0.772	Supported	Large effect: Involvement shapes attitude
H7	TI → SN	0.615***	0.044	13.876	<0.001	[0.529, 0.701]	0.607	Supported	Large effect: Involvement influences norms
H8	TI → PBC	0.642***	0.044	14.521	<0.001	[0.556, 0.728]	0.695	Supported	Large effect: Involvement enhances control perception

those with low social media propensity (M-1SD), this influence was relatively weaker ($\beta=0.536$).

5.6 Testing Moderating Effects

Moderation effects were tested using the product term method, examining the significance of moderation by calculating interaction terms between independent variables and moderators. Regarding the moderating effect of social media propensity, it significantly and positively moderated the relationship between tourism engagement and attitude ($\beta=0.124$, $t=2.876$, $p<0.01$), supporting H9a with a small effect size ($f^2=0.034$). Simple slope analysis revealed that for tourists with high social media propensity (M+1SD), tourism engagement exerted a stronger influence on attitudes ($\beta=0.784$), whereas for

The moderating effect of social media propensity on the relationship between tourism engagement and subjective norm was also significantly positive ($\beta=0.156$, $t=3.421$, $p<0.001$), supporting H9b with a small effect size ($f^2=0.048$). Simple slope analysis revealed that among tourists with high social media propensity, the influence of tourism engagement on subjective norms ($\beta=0.771$) was significantly stronger than among those with low social media propensity ($\beta=0.459$). Consistent with theoretical expectations, this finding indicates that social media propensity amplifies the effect of engagement converting into subjective norms, with high-propensity users more

readily reinforcing perceptions of social influence through interactions on social platforms.

However, the moderating effect of social media propensity on the relationship between tourism engagement and perceived behavioral control was not significant ($\beta = 0.067$, $t = 1.542$, $p = 0.123$), failing to support H9c. This unexpected finding may be explained by the fact that perceived behavioral control primarily involves assessments of resources and capabilities, which rely more heavily on individual circumstances (e.g., time, money, health status). Social media propensity has limited influence on such objective evaluations. While social media may provide informational support for travel planning, it does not directly alter individuals' fundamental assessments of their own capabilities and resources.

Regarding the moderating effect of media exposure, media exposure significantly and positively moderated the relationship between place attachment and travel intention ($\beta=0.142$, $t=3.187$, $p<0.01$), supporting H10a, with a small effect size ($f^2=0.038$). Simple slope analysis revealed that for tourists with high media exposure ($M+1SD$), the influence of place attachment on travel intention was stronger ($\beta=0.409$), whereas for those with low media exposure ($M-1SD$), this influence was relatively weaker ($\beta=0.125$). This indicates that frequent

exposure to tourism media content amplifies the effect of place attachment on travel intention. Repeated media exposure may activate and consolidate tourists' emotional memories of the destination, enabling attachment to more effectively drive behavioral intention.

The moderating effect of media exposure on the relationship between tourism participation and place attachment was also significantly positive ($\beta=0.118$, $t=2.654$, $p<0.01$), supporting H10b, with a small effect size ($f^2=0.031$). Simple slope analysis revealed that tourism engagement's influence on place attachment was stronger under high media exposure ($\beta=0.842$) than under low exposure ($\beta=0.606$). This finding supports media cultivation theory, indicating that repeated media exposure provides highly engaged tourists with more detailed information and visual experiences about the destination, facilitating the development of deeper place identification and place dependence.

Overall, nine of the ten hypotheses were supported, with only H9c not confirmed. The moderation effect tests revealed distinct moderating mechanisms for social media propensity and media exposure across different theoretical pathways, enriching our understanding of how digital media environments influence the formation of tourism intentions.

Table 7 : Moderation Effect Testing Results

Hypothesis	Moderation Path	Interaction Term (β)	SE	t-Value	p-Value	95% CI	f^2	ΔR^2	Decision	Interpretation
H9a	SMD \times TI \rightarrow ATT	0.124**	0.043	2.876	0.004	[0.040, 0.208]	0.034	0.016	Supported	SMD strengthens the positive effect of involvement on attitude
H9b	SMD \times TI \rightarrow SN	0.156***	0.046	3.421	<0.001	[0.066, 0.246]	0.048	0.024	Supported	SMD amplifies the positive effect of involvement on subjective norm
H9c	SMD \times TI \rightarrow PBC	0.067	0.043	1.542	0.123	[-0.018, 0.152]	0.009	0.004	Not Supported	SMD does not significantly moderate involvement-PBC relationship
H10a	ME \times PA \rightarrow TIN	0.142**	0.045	3.187	0.001	[0.054, 0.230]	0.038	0.020	Supported	ME enhances the positive effect of attachment on intention
H10b	ME \times TI \rightarrow PA	0.118**	0.044	2.654	0.008	[0.032, 0.204]	0.031	0.014	Supported	ME strengthens the positive effect of involvement on attachment

Simple Slope Analysis Results:

Hypothesis	Moderator Level	Simple Slope (β)	SE	t-Value	p-Value	Interpretation
H9a	Low SMD (M-1SD)	0.536***	0.061	8.787	<0.001	Significant at low SMD
H9a	High SMD (M+1SD)	0.784***	0.055	14.255	<0.001	Stronger at high SMD ✓
H9b	Low SMD (M-1SD)	0.459***	0.065	7.062	<0.001	Significant at low SMD
H9b	High SMD (M+1SD)	0.771***	0.056	13.768	<0.001	Stronger at high SMD ✓
H10a	Low ME (M-1SD)	0.125*	0.063	1.984	0.047	Weak at low ME
H10a	High ME (M+1SD)	0.409***	0.058	7.052	<0.001	Strong at high ME ✓
H10b	Low ME (M-1SD)	0.606***	0.062	9.774	<0.001	Significant at low ME
H10b	High ME (M+1SD)	0.842***	0.051	16.510	<0.001	Stronger at high ME ✓

Model Comparison (With vs. Without Moderators):

Model	R ² (TIN)	R ² (ATT)	R ² (SN)	R ² (PBC)	R ² (PA)	ΔR ²	F-change	p-Value
Without Moderators	0.667	0.420	0.354	0.408	0.509	-	-	-
With Moderators	0.687	0.436	0.378	0.412	0.523	0.020	4.562	<0.01

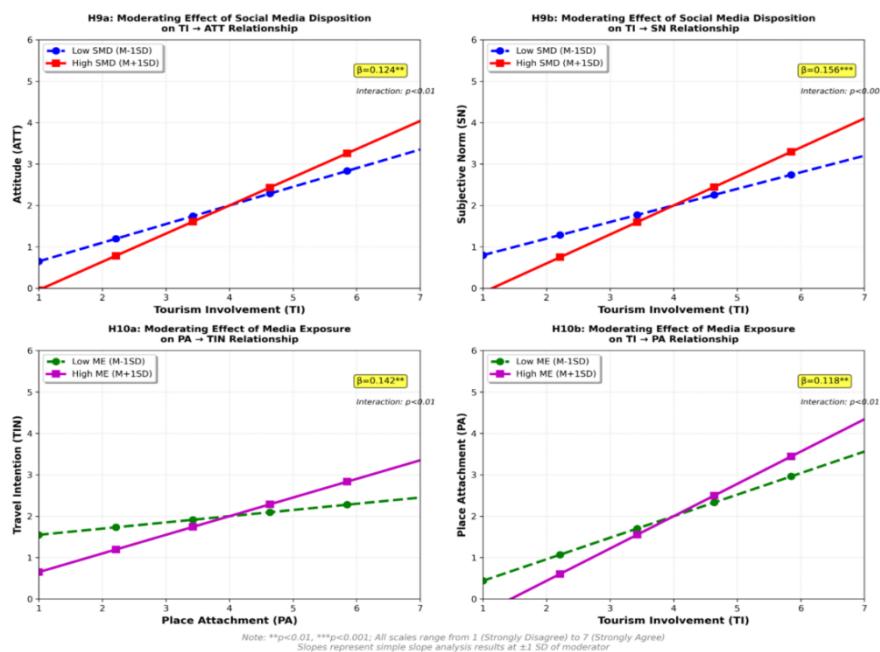


Figure 3 : Interaction Plots for Moderation Effects

6. Discussion and Conclusions

This study constructed and tested an integrated model combining TPB and IAM to explain the formation mechanism of tourist travel intentions in the social media era. The findings largely support the theoretical model, offering new perspectives on contemporary tourist decision-making. Key findings can be summarized in four aspects:

First, the three core constructs of TPB (attitude, subjective norm, perceived behavioral control) all exerted significant positive effects on travel intention, consistent with extensive TPB application research (Ajzen, 1991; Abbasi et al., 2021; Bui, 2023). Among these, attitude exerted the strongest influence ($\beta=0.312$), indicating that tourists' overall evaluation of travel behavior is the most critical cognitive factor driving their travel intention. As Ajzen emphasized, "Attitude reflects an individual's positive or negative evaluation of performing a specific behavior." When tourists hold positive attitudes toward a destination, their visit intention naturally increases. Although the effects of subjective norm ($\beta=0.186$) and perceived behavioral control ($\beta=0.229$) were relatively weaker, they remained significant, indicating that social influence and capability assessment play a non-negligible role in tourism decision-making. This finding supports the applicability of TPB in tourism contexts, confirming that cognitive decision mechanisms form a crucial foundation for understanding travel intention.

Second, the core mechanisms of the IAM model received robust validation. Tourism involvement significantly influenced place attachment ($\beta=0.724$, $f^2=1.101$) with a large effect size, indicating it is the most important predictor of place attachment. This finding aligns closely with studies by Hwang et al. (2005) and Gross & Brown (2008), confirming the theoretical proposition that "individuals with high involvement are more likely to form emotional bonds with destinations." The significant positive influence of place attachment on travel intention ($\beta=0.267$) further supports the crucial role of emotional attachment in tourism decision-making, echoing Prayag and Ryan (2012)'s perspective that "place attachment is a key driver of tourism loyalty." These findings indicate that beyond rational cognitive evaluation, emotional bonds are equally vital forces driving travel intention. The emotional attachment mechanism provides a complementary explanation to cognitive perspectives for understanding tourist behavior.

Third, this study reveals that tourism engagement not only influences place attachment but also significantly impacts all three core constructs of the TPB, constituting a major theoretical contribution. Engagement exerts significant and moderately sized effects on attitude ($\beta=0.660$), subjective norm ($\beta=0.615$), and perceived behavioral control ($\beta=0.642$), indicating its pivotal role within the integrated model. Highly engaged tourists tend to hold more positive attitudes toward tourism activities, are more susceptible to social group influence, and perceive stronger behavioral control. This finding reveals an interaction between cognitive decision-making mechanisms and affective involvement: engagement, as an expression of affective involvement, shapes and reinforces cognitive evaluation processes. This interactive mechanism has received limited attention in previous TPB

or IAM research. By integrating the two theoretical frameworks, this study systematically uncovers this complex relationship.

Fourth, social media orientation and media exposure, as moderating variables, exhibit distinct moderating mechanisms across different theoretical pathways. Social media orientation significantly and positively moderated the relationship between tourism participation and attitude ($\beta=0.124$) as well as between participation and subjective norms ($\beta=0.156$), but did not significantly moderate the relationship between participation and perceived behavioral control. This indicates that social media propensity primarily strengthens the formation of affective attitudes and social norms by enhancing social interaction and information exposure, while having limited impact on objective capability assessments. Media exposure significantly and positively moderated the relationship between place attachment and tourism intention ($\beta=0.142$) as well as between tourism participation and place attachment ($\beta=0.118$), suggesting that repeated media exposure reinforces the formation and functioning of affective attachment. These findings support both Media Effects Theory and Cultivation Theory, revealing unique influence mechanisms of the digital media environment on tourism intention formation.

Collectively, the integrated model explains 68.7% of tourism intention variance, significantly exceeding the explanatory power of either TPB or IAM models alone. This outcome strongly validates the value of theoretical integration, demonstrating that synergistic cognitive decision-making and affective attachment mechanisms provide a more comprehensive explanation for tourism intention formation. Furthermore, the moderating effects of social media propensity and media exposure reveal the differentiated influence of the digital media environment on distinct theoretical pathways, offering new theoretical perspectives for understanding tourism decision-making in the social media era.

By integrating the Theory of Planned Behavior with the Participation-Attachment Model and introducing social media propensity and media exposure as dual moderators, this study constructs a comprehensive explanatory framework for tourism intention. Based on PLS-SEM analysis of 385 valid questionnaires, the study found: (1) The three core constructs of TPB (attitude, subjective norm, perceived behavioral control) significantly and positively influenced travel intention; (2) Travel participation significantly predicted place attachment, which in turn affected travel intention; (3) Travel participation also significantly influenced the three core constructs of TPB, revealing an interaction between cognitive and affective mechanisms; (4) Social media propensity positively moderates the relationship between participation and attitudes/subjective norms, while media exposure positively moderates the relationship between participation and place attachment, and between place attachment and travel intention, demonstrating differentiated moderation mechanisms. The integrated model explains 68.7% of travel intention variance, significantly outperforming single-theory models and validating the value of theoretical integration.

The theoretical contributions of this study are: (1) systematically integrating cognitive decision-making and affective attachment mechanisms to provide a more comprehensive explanatory framework for tourism intention; (2) clarifying the pivotal role of tourism engagement within the integrated model; (3) revealing the differentiated influence mechanisms of the digital media environment on distinct theoretical pathways; (4) offering a new paradigm for extending and applying TPB in tourism contexts. Practically, the study offers multidimensional, systematic strategic guidance for destination managers, tourism enterprises, and social media marketers, emphasizing the synergistic effects of cognitive shaping, emotional cultivation, and media marketing.

Despite limitations such as cross-sectional design, sampling methods, and measurement of actual behavior, this research makes significant contributions to understanding the formation mechanisms of tourist travel intentions in the social media era through theoretical integration and empirical validation. Future research should deepen and broaden these findings through longitudinal designs, cross-cultural comparisons, mixed-method approaches, and multi-theoretical integration, advancing tourism behavior studies toward greater sophistication and comprehensiveness. Against the backdrop of deepening digitalization and socialization, understanding how media environments shape tourists' cognition, emotions, and behaviors holds significant theoretical and practical implications for the sustainable development and competitiveness enhancement of the tourism industry...

REFERENCES

1. Abbasi, G. A., Kumaravelu, J., Goh, Y. N., & Dara Singh, K. S. (2021). Understanding the intention to revisit a destination by expanding the theory of planned behaviour (TPB). *Spanish Journal of Marketing-ESIC*, 25(2), 282-311.
2. Abuhashesh, M., Alshurideh, M., Al Kurdi, B., & Salloum, S. A. (2021). Social media and impact customer involvement and brand loyalty: The mediating role of customer engagement. *International Journal of Data and Network Science*, 5(3), 441-460.
3. Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In J. Kuhl & J. Beckmann (Eds.), *Action control: From cognition to behavior* (pp. 11-39). Springer.
4. Ajzen, I. (1991). The theory of planned behavior. *Organizational Behavior and Human Decision Processes*, 50(2), 179-211.
5. Ajzen, I., & Kruglanski, A. W. (2019). Reasoned action in the service of goal pursuit. *Psychological Review*, 126(5), 774-786.
6. Al-Gasawneh, J. A., & Al-Adamat, A. M. (2020). The relationship between perceived destination image, social media interaction and travel intentions relating to Neom city. *Academy of Strategic Management Journal*, 19(2), 1-12.
7. Bui, B. T. T. (2022). An evaluation of the new tourist behavior model based on the extended theory of planned behavior. *Journal of Tourism, Heritage & Services Marketing*, 8(2), 48-57.
8. Bui, B. T. T. (2023). Applying the extended theory of planned behavior to understand domestic tourists' behaviors in post COVID-19 era. *Cogent Social Sciences*, 9(1), 2166450.
9. Chen, N., & Dwyer, L. (2017). Residents' place satisfaction and place attachment on destination brand-building behaviors: Conceptual and empirical differentiation. *Journal of Travel Research*, 57(8), 1026-1041.
10. Chen, H., Liu, B., & Cheng, M. (2022). Analysis of the mediating role of place attachment in the link between tourists' authentic experiences of involvement in, and loyalty to rural tourism. *Sustainability*, 14(19), 12795.
11. Chen, Y., Huang, X., & Li, X. (2023). Effects of social media tourism information quality on destination travel intention: Mediation effect of self-congruity and trust. *Frontiers in Psychology*, 13, 1049149.
12. Cohen, J. (1988). *Statistical power analysis for the behavioral sciences* (2nd ed.). Lawrence Erlbaum Associates.
13. Esfandiar, K., Dowling, R., Pearce, J., & Goh, E. (2025). A critical review of the theory of planned behaviour in tourism research. *Current Issues in Tourism*, Advanced online publication.
14. Eusébio, C., Vieira, A. L., & Lima, S. (2018). Place attachment, host-tourist interactions, and residents' attitudes towards tourism development: The case of Boa Vista Island in Cape Verde. *Journal of Sustainable Tourism*, 26(6), 890-909.
15. Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. *Journal of Marketing Research*, 18(1), 39-50.
16. Gerbner, G. (1966). On defining communication: Still another view. *Journal of Communication*, 16(2), 99-103.
17. Gross, M. J., & Brown, G. (2008). An empirical structural model of tourists and places: Progressing involvement and place attachment into tourism. *Tourism Management*, 29(6), 1141-1151.
18. Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. *European Business Review*, 31(1), 2-24.
19. Hanafiah, M. H., Yousaf, S., & Zulkifly, M. I. (2022). The effect of social media on tourism destination choice. *Journal of Tourism and Services*, 13(24), 1-20.
20. Hasan, K., Karim, R., Ismail, W., & Razak, A. (2020). Understanding the intention to revisit among international tourists through TPB model. *Journal of Tourism Futures*, 6(3), 203-217.
21. Hasan, M. K., Ismail, A. R., & Islam, M. F. (2023). Perceived value and trust towards intention to travel: Moderating role of destination familiarity. *Journal of Tourism and Services*, 14(26), 90-109.

22. Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. *Journal of the Academy of Marketing Science*, 43(1), 115-135.

23. Hsieh, C. M., Park, S. H., & McNally, R. (2016). Application of the extended theory of planned behavior to intention to travel to Japan among Taiwanese youth: Investigating the moderating effect of past visit experience. *Journal of Travel & Tourism Marketing*, 33(5), 717-729.

24. Hudson, S., & Thal, K. (2013). The impact of social media on the consumer decision process: Implications for tourism marketing. *Journal of Travel & Tourism Marketing*, 30(1-2), 156-160.

25. Hwang, S. N., Lee, C., & Chen, H. J. (2005). The relationship among tourists' involvement, place attachment and interpretation satisfaction in Taiwan's national parks. *Tourism Management*, 26(2), 143-156.

26. Khan, N. A., Khan, A. N., & Moin, M. F. (2021). Energizing intention to visit rural destinations: How social media disposition and social media use boost tourism through information publicity. *Frontiers in Psychology*, 12, 782461.

27. Kock, N. (2015). Common method bias in PLS-SEM: A full collinearity assessment approach. *International Journal of e-Collaboration*, 11(4), 1-10.

28. Koo, C., Joun, Y., Han, H., & Chung, N. (2016). A structural model for destination travel intention as a media exposure: Belief-desire-intention model perspective. *International Journal of Contemporary Hospitality Management*, 28(7), 1338-1360.

29. Kumar, S., Dhir, A., Talwar, S., Chakraborty, D., & Kaur, P. (2023). Antecedents and consequences of travel intentions: A meta-analysis and structural equation model. *Tourism Management*, 96, 104710.

30. Kyle, G., Graefe, A., Manning, R., & Bacon, J. (2004). Effects of place attachment on users' perceptions of social and environmental conditions in a natural setting. *Journal of Environmental Psychology*, 24(2), 213-225.

31. Lee, H., Jung, T. H., Tom Dieck, M. C., & Chung, N. (2019). Role of place attachment dimensions in tourists' decision-making process in Cittáslow. *Journal of Destination Marketing & Management*, 13, 108-116.

32. Li, J., Scott, N., & Walters, G. (2022). E-WOM and tourist well-being: The mediating role of social support and optimism. *Tourism Management*, 88, 104406.

33. Meng, B., & Choi, K. (2015). The role of authenticity in forming slow tourists' intentions: Developing an extended model of goal-directed behavior. *Tourism Management*, 57, 397-410.

34. Meng, B., & Choi, K. (2019). Extending the theory of planned behaviour: Testing the effects of authentic perception and environmental concerns on the slow-tourist decision-making process. *Current Issues in Tourism*, 22(12), 1351-1354.

35. Meng, B., & Cui, M. (2020). The role of co-creation experience in forming tourists' revisit intention to home-based accommodation: Extending the theory of planned behavior. *Tourism Management Perspectives*, 33, 100581.

36. Nguyen, T. T., Phan, H. M., & Ngo, L. V. (2024). Factors affecting tourists' destination selection behavior: The moderating role of travel video experience. *European Journal of Business and Management Research*, 9(4), 1-10.

37. Omeish, F., Sharabati, A., Abuhashesh, M., Al-Haddad, S., Nasereddin, A., Alghizzawi, M., & Badran, O. (2024). The role of social media influencers in shaping destination image and intention to visit Jordan: The moderating impact of social media usage intensity. *International Journal of Data and Network Science*, 8(3), 1701-1714.

38. Pahrudin, P., Chen, C. T., & Liu, L. W. (2021). A modified theory of planned behavioral: A case of tourist intention to visit a destination post pandemic Covid-19 in Indonesia. *Heliyon*, 7(10), e08230.

39. Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. *Journal of Applied Psychology*, 88(5), 879-903.

40. Prayag, G., & Ryan, C. (2012). Antecedents of tourists' loyalty to Mauritius: The role and influence of destination image, place attachment, personal involvement and satisfaction. *Journal of Travel Research*, 51(3), 342-356.

41. Ramkisson, H. (2023). Perceived social impacts of tourism and quality-of-life: A new conceptual model. *Journal of Sustainable Tourism*, 31(2), 442-459.

42. Ringle, C. M., Wende, S., & Becker, J. M. (2022). SmartPLS 4. SmartPLS GmbH. <http://www.smartpls.com>

43. Sarstedt, M., Ringle, C. M., & Hair, J. F. (2019). Partial least squares structural equation modeling. In C. Homburg, M. Klarmann, & A. Vomberg (Eds.), *Handbook of market research* (pp. 587-632). Springer.

44. Soliman, M. (2021). Extending the theory of planned behavior to predict tourism destination revisit intention. *International Journal of Hospitality & Tourism Administration*, 22(5), 524-549.

45. Song, H. J., Lee, C. K., Kang, S. K., & Boo, S. J. (2012). The effect of environmentally friendly perceptions on festival visitors' decision-making process using an extended model of goal-directed behavior. *Tourism Management*, 33(6), 1417-1428.

46. Stylidis, D. (2018). Residents' place image: A cluster analysis and its links to place attachment and support for tourism. *Journal of Sustainable Tourism*, 26(6), 1007-1026.

47. Ulker-Demirel, E., & Ciftci, G. (2020). A systematic literature review of the theory of planned behavior in tourism, leisure and hospitality management research. *Journal of Hospitality and Tourism Management*, 43, 209-219.

48. Vieira, A. L. (2005). Delivering quality service: All for one? *Journal of Quality Assurance in Hospitality & Tourism*, 6(1-2), 25-48.

49. Williams, D. R., & Vaske, J. J. (2003). The measurement of place attachment: Validity and

generalizability of a psychometric approach. *Forest Science*, 49(6), 830-840.

50. Xiang, Z., & Gretzel, U. (2010). Role of social media in online travel information search. *Tourism Management*, 31(2), 179-188.