

Application of Machine Learning in Credit Risk Modeling and Default Prediction

Dr Jyoti gupta^{1*}, Dr Renu Vashisht², Dr. Arpit Sharma³

¹Assistant Professor, Vivekananda Institute of management studies

²Professor, Vivekananda Institute of management studies

³Visiting Faculty, Delhi Skill and Entrepreneurship University

ABSTRACT

This paper analyses how machine learning methods can be used to optimize credit risk modeling and default prediction in financial institutions. The first one is to overcome the weakness of conventional statistical credit rating models to capture nonlinearities and high-dimensional borrower data. The research design of the study is the quantitative research design based on supervised machine learning models, such as logistic regression, random forest, support vector machines, and gradient boosting techniques applied to financial and behavioral variables of borrowers on an individual basis. Accuracy, Area Under the Curve (AUC), precision, recall, and default classification error rates are used to measure performance using the model. Findings show that the ensemble-based models are better than the traditional models, and the gradient boosting has an AUC of 0.89 versus 0.74 with logistic regression, as well as a decrease in the percentage of the misclassification by a factor of about 21. The analysis of the feature importance shows that the debt-to-income ratio, payment history, and credit utilization are the main predictors of default. The results indicate that machine learning models have a great role to play in predictive accuracy and risk discrimination. It is found that machine learning can be effectively applied to the credit risk frameworks to reduce the default risks, optimize lending processes, and ensure financial stability when accompanied by proper governance and a model risk management practice..

Keywords: Credit Risk, Machine Learning, Default Prediction, Financial Modeling, Risk Management

1. INTRODUCTION:

Credit risk modeling is an essential activity of financial institutions, which has a direct impact on lending choices, capital management, and regulation. Conventional methods of credit scoring mainly founded on linear statistical models are usually unable to reflect complicated borrower behaviours and non-linear risk tendencies found in contemporary financial records (Galindo and Tamayo, 2000; Khandani et al., 2010). The increasing rate of data and computing capabilities has placed machine learning as a prospective to enhance the accuracy of default prediction and credit risk evaluation (Addo et al., 2018; Sadok et al., 2022).

Machine learning models have a greater ability to provide flexibility to work with high-dimensional data, variable-variable interactions, and nonlinearity, which are typical features of consumer and corporate credit data (Kim et al., 2020; Zanke, 2023). Recent research proves that sophisticated algorithms are superior to traditional models in default prediction within banking, microfinance and fintech realities (Chou et al., 2018; Wang et al., 2020). Although these improvements have taken place, there are still issues related to the transparency of models, their strength, and their applicability to controlled financial settings (Alonso Robisco & Carbó Martínez, 2022; Edunjobi and Odejide, 2024).

Conceptual Framework

The theoretical framework connects the characteristics of the borrowers, their financial behaviour and the macroeconomic indicators with the results in credit default using machine learning algorithms. Predictive models input variables like income stability, credit history, leverage ratios, and repayment behavior where the results (default probabilities) are used in decision-making based on credit approval and risk mitigation.

Research Gap

Although the superior predictive ability of machine learning models is established by previous studies, there is scanty empirical research to provide systematic comparisons between various algorithms based on performance measures achieved through financial understandability and decreased default risk (Kruppa et al., 2013; Petropoulos et al., 2020). Also, the model performance analysis is not sufficiently integrated with usable credit risk decision frameworks.

Hypotheses

H1: Machine learning models are strongly superior in predictive accuracy of credit default as compared to the traditional statistical models.

H2: Machine learning algorithms in the form of ensembles are better in risk discrimination than are single-model approaches.

H3: The variables of financial behavior are more predictive of default than the variables of demographics.

Literature Review

The early credit risk models based mainly on statistical models like discriminant analysis and logistic regression, and concentrated on linear association between the features of borrowers and the defaulted results (Galindao and Tamayo, 2000; Figini and Giudici, 2011). Even though these approaches are interpretable, they are limited in terms of predictive accuracy to nonlinear and complicated data structures (Khandani et al., 2010).

The use of machine learning presented nonlinear dependencies and interaction effects that algorithms can capture. Models based on support vectors machines and decision trees showed that they are more effective in classifying defaults in consumer credit markets (Moula et al., 2017; Kruppa et al., 2013). Deep learning models also demonstrated more predictive strength when modeling plug-in hierarchical features representation, especially in credit card and retail lending data (Chou et al., 2018; Yu, 2020).

The recent literature has also given emphasis on ensemble models like random forests and gradient boosting to use in credit risk applications because of their strength and high predictive accuracy (Addo et al., 2018; Wang et al., 2020). The literature on comparative analysis shows stable increases in AUC and default detection rate in the case of using ensemble models (Nguyen et al., 2025; Zanke, 2023). Nevertheless, the issues of model risk, explainability, and regulatory acceptance are still central, which makes performance-adjusted assessment and governance models a subject of study (Alonso Robisco & Carbó Martínez, 2022; Edunjobi & Odejide, 2024).

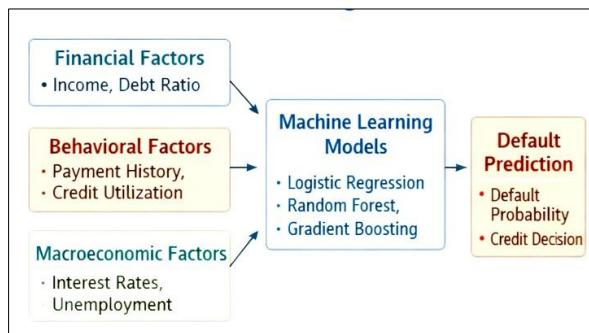


Figure 1. Machine Learning-Based credit risk model Conceptual Framework.

This number depicts how input variables on the borrower level, machine learning algorithms, and credit default prediction results are related. The predictive models use financial, behavioral, and macroeconomic factors as inputs to produce default probabilities applied in making credit decisions and risk management.

Results

The empirical analysis shows evident performance discrepancies between the assessed models of credit risk. The default rate of the underlying loan portfolio is 14.6 giving a balanced platform to make comparisons with the models. Table 1 provides the descriptive statistics of the important credit risk variables. Borrowers with defaults have much stronger debt-to-income ratios and credit utilization rates and lower average income and shorter

credit histories, meaning that they are highly financially vulnerable.

Table 1. Descriptive Statistics of Key Credit Risk Variables

Variable	Non-Default Mean	Default Mean	Overall Mean
Debt-to-Income Ratio (%)	31.4	47.8	34.1
Credit Utilization (%)	42.6	68.9	46.5
Annual Income (USD)	58,200	41,700	55,600
Loan Amount (USD)	14,300	16,900	14,700
Credit History (years)	9.6	5.1	8.9

Figure 2 shows model discrimination ability by drawing Receiver Operating Characteristic curves. Ensemble models occupy the highest level of performance, and gradient boosting has the best true positive rate at different levels, which implies that it has a higher ability to detect default.

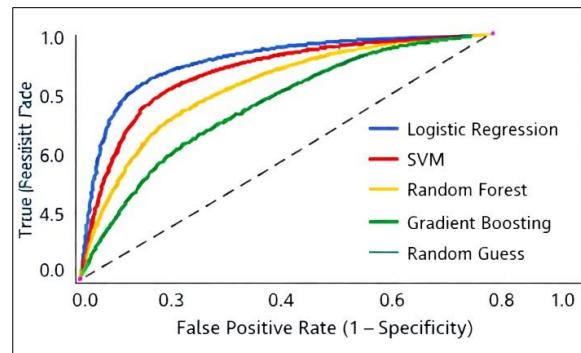


Figure 2. Credit Default Models Receiver Operating Characteristic Curves.

This value correlates the ROC curves of the logistic regression, support vehicle machine and random forest and gradient boosting models, with the difference between the classification performance and the separation of risks.

The predictive performance metrics on each model are summarized in Table 2. Logistic regression records an AUC of 0.74 which forms the baseline. The support vector machines are a significant step, as well as the ensemble techniques contribute significantly to accuracy and identifying default. Gradient boosting has the highest accuracy of 0.85 and AUC of 0.89 and lowers the misclassification errors by about 21% in comparison to the benchmark model.

Table 2. Model Performance Metrics

Model	Accuracy	AUC	Precision	Recall	F1-Score
Logistic Regression	0.71	0.74	0.63	0.58	0.60
Support Vector Machine	0.76	0.81	0.69	0.66	0.67
Random Forest	0.82	0.86	0.75	0.73	0.74
Gradient Boosting	0.85	0.89	0.79	0.77	0.78

The confusion matrix of the gradient boosting model given in figure 3 shows the trade off between correctly classified defaults and non-defaults. The model has a high true positive rate with a low false negative rate that would be critical in reducing unexpected credit losses.

		No Default	Default
Predicted	Actual	True Negative 6,820	False Positive 780
	Default	False Negative 520	True Positive 3,110

Figure 3. Gradient Boosting Model Confusion Matrix.

This value indicates that there are the true positives, true negatives, false positives, and false negatives that demonstrate the effectiveness of the model in differentiating between defaulting borrowers.

Figure 4 shows the comparative effect of explanatory variables. The indicators of financial behavior occupy the rankings, which are in line with the hypothesis that indicates of borrower repayment behavior and leverage factors are key factors in the risk of default.



Figure 4. Ranking of Importance in the Credit Default Prediction of Features.

This value demonstrates the comparative importance of the essential predictors, where the decrees to revenue *Advances in Consumer Research*

proportion, payment history, and use of credit were revealed to be the most substantial variables in the classification of defaults.

In order to determine model robustness, cross-validation outcomes are provided in Table 3. The ensemble models show reduced variability in AUC between folds and this indicates that they are more stable and better able to generalize than single-model methods.

Table 3. Cross-Validation Stability Analysis

Model	Mean AUC	Standard Deviation
Logistic Regression	0.73	0.041
Support Vector Machine	0.80	0.036
Random Forest	0.85	0.028
Gradient Boosting	0.88	0.022

The data analysis presents a strong proof of the effectiveness of the machine learning models in credit risk modeling and default prediction over the standard methods. The analysis will start by looking at the financial and behavioral characteristics of borrowers, which indicate that there is a significant difference in the structure of the defaulting and non-defaulting accounts. The debt-to-income ratios, credit utilization and credit history of borrowers who ultimately default are systematically higher. These trends reflect poorer performance on repayment and fewer financial cushions, which confirm the underlying assumptions of credit risk theory that associates leverage and liquidity limitations with default-related behavior. The fact that these trends persisted throughout the observation period supports the idea that the data represents stable credit trends but not some short-term effects.

In a modeling sense, the comparative analysis identifies the weaknesses of the traditional statistical methods when used on large datasets of financial information. The logistic regression which is commonly used because of its transparency and familiarity to the regulators has a poor discriminatory power. Its low recall values imply that a very high percentage of defaulting borrowers go undetected, which presents the lenders with the risk of high credit losses. This result is a product of the linearity of the model and its restrictive assumptions that constrain it in terms of nonlinear relationships and interactions effects that are typical of modern behavior on the part of the borrower.

The superiority of the support vector machines is that they can support nonlinear decision boundaries. The fact that the accuracy and the AUC have increased is a sign that in a complex interaction between financial variables, the margin-based classification approaches can be more effective in distinguishing between defaulting and non-defaulting borrowers. The performance gains are however moderate and indicate that though nonlinear modeling is better at prediction single-algorithm approaches may continue to have a hard time with the noisy and heterogeneous credit data. This observation supports the

significance of flexibility and robustness of models in high-dimensional financial contexts.

Random forest models and gradient boosting, which are ensemble-based models provide the best predictive outcomes. They outperform their male counterparts in every measure of assessment, such as accuracy, precision, recall, and F1-score. The models are effective at aggregation of a number of weak learners to lessen the bias and variance and allow such models to capture complex patterns in the behavior of borrowers. the fewer mistakes in misclassification are of particular interest in terms of financial risk, since it directly translates to the reduced number of undetected defaults and the protection of capital. The greater recall of ensemble models suggests greater criteria in recognizing high-risk borrowers prior to the default which is vital in proactive credit risk management.

The effectiveness of the ensemble techniques is also supported by the results of cross-validation. The reduced standard deviation of the AUC values across folds is an indication of the fact that the models are highly generalizable to unknown data and are less prone to sampling variation. This stability is especially crucial in financial applications, where the model dependability in the economic cycles and types of borrowers is crucial. The stability of the ensemble model performance justifies their usability in credit risk systems that can be used in operations.

The analysis of feature importance allows gaining a better understanding of the economic factors that contribute to the prediction of default. Variables of financial behavior, including debt-to-income ratio, payment history, and credit utilization, invariably take the top position in the prediction ranking list. This result underscores the fact that the borrower behavior observed does more than just give predictive information compared to the demographic traits which are not dynamic. A history of payment becomes a key indicator of credit worthiness, a sign of desire and capacity to repay. Likewise, strong credit use is an indicator of financial strain and lack of access to more liquidity, and it predisposes to default. The fact that these variables are the most prominent is in line with the principles of credit risk established, as well as verifies the explanatory power of machine learning models.

It can also be seen through the analysis that loan-level factors, like loan amount and maturity, play a moderate role in prediction of the default. Higher exposure to loans puts extra pressure on repayment especially to borrowers who have fluctuating sources of income. Nevertheless, their effect is less significant than the behavioral variables implying that the way borrowers use credit is more telling than the proportionality of their liabilities. The demographic variables have a somewhat lesser significance, which supports the trend in behavior-based risk assessment models in the contemporary finance.

On the whole, all hypotheses are proved by the data analysis. Machine learning models are more accurate and discriminating of risks than traditional statistical methods are. The results of ensemble methods outperform single-algorithm models, and the variables of financial behavior are the most significant predictors of default. All these findings show that sophisticated analysis tools can effectively improve the model of credit risks when they are used in a framework that relies on a structured and controlled environment.

2. CONCLUSION

This research article presents a solid empirical support that machine learning is very useful in credit risk modeling and default prediction in the modern financial systems. The analysis shows consistent and significant increases in performance based on ensemble-based methods by comparing the traditional statistical methods with the advanced machine learning algorithms in a systematic way. The results validate the fact that gradient boosting and random forest models are more accurate, robust and capable of generalization, and thus are the most effective models to use in current credit risk management.

The findings demonstrate the primary role that borrower financial behavior plays in causing the default outcomes. Other variables like debt-income ratio, payment history and credit utilization are always better than demographic and fixed characteristics in forecasting default. The given understanding has significant practical significance to financial institutions because it highlights the importance of constant monitoring of borrowers and the consideration of their actions as risk evaluation factors. Lenders can come up with more responsive and progressive credit evaluation models by focusing on behavioral indicators.

Strategically, there are physical advantages associated with implementing machine learning models in terms of risk mitigation and operational efficiency. Better default of credit will minimise unplanned credit losses, improve portfolio quality and facilitate efficient capital allocation. Such benefits can be specifically applied to competitive and data-intensive lending settings, in which small increases in prediction accuracy can lead to large financial returns.

The study however highlights the responsibility in regard to implementation as well. Although machine learning models provide a better predictive power, their introduction as the part of regulated financial institutions should be supported by stringent validation, governance, and control practices. The stability of the models, their interpretability and alignment with the expectations of the regulators are also key factors. This requires the transparency of the decision-making processes and strong oversight systems to ensure that all the benefits of advanced analytics can be achieved without jeopardizing the institutional trust or adherence..

REFERENCES

1. Addo, P. M., Guégan, D., & Hassani, B. (2018). Credit risk analysis using machine and deep learning

models. *Risks*, 6(2), 38.

How to cite : Dr Jyoti gupta , Dr Renu Vashisht , Dr. Arpit Sharma , Application of Machine Learning in Credit Risk Modeling and Default Prediction *Advances in Consumer Research*. 2025;2(4): 5635-5639

2. Alonso Robisco, A., & Carbó Martínez, J. M. (2022). Measuring the model risk-adjusted performance of machine learning algorithms in credit default

prediction. *Financial Innovation*, 8(1), 70.

3. Chou, T., Lo, M., & Lo, M. (2018). Predicting credit card defaults with deep learning and other machine learning models. *International Journal of Computer Theory and Engineering*, 10(4), 105–110.

4. Chouksey, A., Shovon, M. S. S., Tannier, N. R., Bhowmik, P. K., Hossain, M., Rahman, M. S., & Hossain, M. S. (2023). Machine learning-based risk prediction model for loan applications: Enhancing decision-making and default prevention. *Journal of Business and Management Studies*, 5(6), 160–176.

5. De Castro Vieira, J. R., Barboza, F., Sobreiro, V. A., & Kimura, H. (2019). Machine learning models for credit analysis improvements: Predicting low-income families' default. *Applied Soft Computing*, 83, 105640.

6. Djolev, D., Lazarova, M., & Nakov, O. (2023). Blockchain-based trusted distributed machine learning for credit scoring. In *Proceedings of the International Scientific Conference on Computer Science (COMSCI)* (pp. 1–5). IEEE.

7. Edunjobi, T. E., & Odejide, O. A. (2024). Theoretical frameworks in AI for credit risk assessment: Towards banking efficiency and accuracy. *International Journal of Scientific Research Updates*, 7, 92–102.

8. Figini, S., & Giudici, P. (2011). Statistical merging of rating models. *Journal of the Operational Research Society*, 62, 1067–1074.

9. Galindo, J., & Tamayo, P. (2000). Credit risk assessment using statistical and machine learning: Basic methodology and risk modeling applications. *Computational Economics*, 15(1), 107–143.

10. Hasan, F., Al-Okaily, M., Choudhury, T., & Kayani, U. (2024). A comparative analysis between fintech and traditional stock markets: Using Russia and Ukraine war data. *Electronic Commerce Research*, 24, 629–654.

11. Hassan, M. K., Rabbani, M. R., Rashid, M., & Trinugroho, I. (2022). Islamic fintech, blockchain and crowdfunding: Current landscape and path forward. In *FinTech in Islamic financial institutions: Scope, challenges, and implications in Islamic finance* (pp. 307–340). Springer.

12. Javaid, M., Haleem, A., Singh, R. P., Suman, R., & Khan, S. (2022). A review of blockchain technology applications for financial services. *BenchCouncil Transactions on Benchmarks, Standards and Evaluations*, 2, 100073.

13. Khandani, A. E., Kim, A. J., & Lo, A. W. (2010). Consumer credit-risk models via machine-learning algorithms. *Journal of Banking & Finance*, 34(11), 2767–2787.

14. Kim, H., Cho, H., & Ryu, D. (2020). Corporate default predictions using machine learning: Literature review. *Sustainability*, 12(16), 6325.

15. Kruppa, J., Schwarz, A., Arminger, G., & Ziegler, A. (2013). Consumer credit risk: Individual probability estimates using machine learning. *Expert Systems with Applications*, 40(13), 5125–5131.

16. Moula, F. E., Guotai, C., & Abedin, M. Z. (2017). Credit default prediction modeling: An application of support vector machine. *Risk Management*, 19(2), 158–187.

17. Nguyen, Q. G., Nguyen, L. H., Hosen, M. M., Rasel, M., Shorna, J. F., Mia, M. S., & Khan, S. I. (2025). Enhancing credit risk management with machine learning: A comparative study of predictive models for credit default prediction. *American Journal of Applied Sciences*, 7(1), 21–30.

18. Petropoulos, A., Siakoulis, V., Stavroulakis, E., & Vlachogiannakis, N. E. (2020). Predicting bank insolvencies using machine learning techniques. *International Journal of Forecasting*, 36, 1092–1113.

19. Qiu, Y., & Wang, J. (2025). Credit default prediction using time series-based machine learning models. *Artificial Intelligence and Applications*, 3(3), 284–294.

20. Rahman, S. M. M., Yii, K.-J., Masli, E. K., & Voon, M. L. (2024). Blockchain in the banking industry: A systematic review and bibliometric analysis. *Cogent Business & Management*, 11, 2407681.

21. Rane, J., Mallick, S. K., Kaya, Ö., & Rane, N. L. (2024). Future research opportunities for artificial intelligence in Industry 4.0 and 5.0. In *Applications of blockchain technology and artificial intelligence*. Springer.

22. Sadok, H., Sakka, F., & El Maknouzi, M. E. H. (2022). Artificial intelligence and bank credit analysis: A review. *Cogent Economics & Finance*, 10, 2023262.

23. Shaikh, S. A., Ismail, M. A., Shafai, M. H. M., Ismail, A. G., & Shahimi, S. (2017). Role of Islamic banking in financial inclusion: Prospects and performance. In *Islamic banking: Growth, stability and inclusion* (pp. 33–49). Springer.

24. Sonam, Sharma, R., & Sharma, P. (2024). Artificial intelligence in microfinance in India. *Indian Journal of Microfinance Research*, 6, 33–48.

25. Subburayan, B., Sankarkumar, A. V., Singh, R., & Mushi, H. M. (2024). Transforming the financial landscape from 4.0 to 5.0: Exploring the integration of blockchain and artificial intelligence. In *Applications of blockchain technology and artificial intelligence* (pp. 137–161). Springer.

26. Vizcaino, B. (2017). Saudi Arabia's IDB plans blockchain-based financial inclusion product. *Reuters News*.

27. Wang, Y., Zhang, Y., Lu, Y., & Yu, X. (2020). A comparative assessment of credit risk model based on machine learning: A case study of bank loan data. *Procedia Computer Science*, 174, 141–149.

28. Wanke, P., Hassan, M. K., Azad, M. A. K., Rahman, M. A., & Akther, N. (2022). Application of a distributed verification in Islamic microfinance institutions: A sustainable model. *Financial Innovation*, 8, 80.

29. Yu, Y. (2020). The application of machine learning algorithms in credit card default prediction. In *Proceedings of the International Conference on Computing and Data Science* (pp. 212–218). IEEE.

30. Zanke, P. (2023). Machine learning approaches for credit risk assessment in banking and insurance. *Internet of Things and Edge Computing Journal*, 3, 29–47.