
Advances in Consumer Research
https://acr-journal.com/

Advances in Consumer Research 28

Volume-1 | Issue-1 | Jan 2024

Managing Dimensional History in Data Warehouses A Comparative Analysis of

Hash-Based and Surrogate Key Approaches

Mr. Reddaiah Kasturi1, Mr. Raghavendar Nellikondi2
1Independent researcher, Sterling VA, USA.

Email ID : Reddaiah.Kasturi@yahoo.com
2Independent researcher, Sterling, VA, USA,

Email ID : raghav.nellikondi@gmail.com

 ABSTRACT

This paper will take on the ongoing discrepancy between the competencies that are taught to

This paper compares the main two ways of keeping the dimensional history within a data store:

Hash based approaches and Surrogate key type methods. Companies are using historical data

increasingly for analytics and decision-making. Selection criteria on dimension management

strategy is crucial to warehousing performance and maintenance. The hash-based approaches

employ cryptography in order to process-dimensional attributes to generate distinctive

identifiers. This allows changes to be discovered automatically and versioning to be retained

without always maintaining additional lookup tables. Surrogate key approaches in contrast

utilize sequentially generated system identifiers to monitor the evolution of dimensions through

time. These methods typically involve the use of Slowly Changing Dimension (SCD) patterns.

The work compares the two methods on a number of dimensions, including how difficult they

are to implement, how well they support queries, how well they compress storage space after

being implemented and how well they find differences, as well as scale. We evaluate the trade-

off between these two approaches for different workloads and data sizes through experiments

based on popular industry benchmarks. Using hash-based methods is better in detecting changes

and simplifying ETL, while the proxy key approach is good at query optimization and easier to

manage relationships. The study provides useful advice to data warehouse architects - for the

first time through knowing when each method is more suitable. This allows them to make

intelligent decisions that align with the realities of their business and the constraints of their

technology..

Keywords: Data Warehouse, Dimensional History Management, Hash-Based Approach,

Surrogate Key, Slowly Changing Dimensions..

1. INTRODUCTION:

Obsolete Data warehouses are an integral part of the

infrastructure of modern businesses; as the amount of data

grows considerably and business intelligence

requirements become more complex. Modern DW

systems must store not only large amounts of data, but also

full historic versions (for time analysis as well as to

comply with legal requirements) [1]. As the big

businesses are transitioning to data-driven decision-

making, the design of a data warehouse is being subjected

to an unparalleled trauma due to speed and analytical

agility. The tracking of dimensional history, i.e., how

business units have evolved over time, soon becomes a

major issue that in turn has profound implications on the

warehouse performance, storage efficiency and

complexity of the queries [2].

Dimensional design is the heart of a Data Warehouse. It

aggregates data to fact tables as quantifiable business

measures and to dimension tables holding the context for

analysis [3]. But business is no lap dog and never

becomes static. For instance, the addresses of customers

change, product specifications change, supplier

relationships change and organizational structures are

subject to constant amendment. One of the most difficult

technical challenges in building a data warehouse is

aggregating this information over time while supporting

fast query access and ensuring accurate results [4]. By the

way that you architect it on how you manage dimensional

history is going to permeate throughout your entire

warehouse. These decisions have far reached

implications, especially around the complexity of ETL

logic that needs to be performed, how much storage is

needed and performance of queries and last but not the

least business tools that can be used by end-users.

Conventionally, the approach to dealing with dimensional

history has been via surrogate key techniques whereby

sequential numbers assigned by the system are assigned

as primary keys regardless of a business meaningful

value [5]. For security full history records, this popular

model employs Type 2 Slowly Changing Dimension

(SCD) patterns implemented to maintain row version. As

for the surrogate key designs, they require a lookup table

and an attribute-level comparison to find changed records

and managing the surrogate key assignment among

multiple ETL processes [6]. For all the decades of

improvement and variety of tool support, though, these

methods make the architecture more complex and slow

things down — a bigger deal when data sizes reach

petabyte scale.

Original Researcher Article

https://acr-journal.com/
https://acr-journal.com/
https://acr-journal.com/
mailto:Reddaiah.Kasturi@yahoo.com
mailto:raghav.nellikondi@gmail.com

How to cite : Mr. Reddaiah Kasturi, Mr. Raghavendar Nellikondi, Managing Dimensional History in Data Warehouses A

Comparative Analysis of Hash-Based and Surrogate Key Approaches. Advances in Consumer Research. 2024;1(1): 28-35

Advances in Consumer Research 29

Recent advancements in computer science and encryption

techniques now enable us to utilize hash functions in

novel ways for handling dimensional data. Hash-based

techniques Cryptographic algorithms, such as SHA-256,

are employed to convert the dimensional traits into

deterministic identifiers. This results in natural keys

displaying dimensions state naturally [7]. This paradigm

shift eliminates the extra work required on the backbone

side to create surrogate key and maintain look up tables.

It also enables automatic discovery of comparing changes

by simple hash comparison mechanisms. Since hash

generation is deterministic, it can be done in parallel

without coordination thus could be very useful for

distributed data warehouse designs [8].

Despite the theoretical sounds, here’s really not that

much research/science that shows how these methods

compare against the well-known surrogate key handling

techniques to date. Much research focus on some part of

the process like speed of ETL or optimizing query without

considering all operational factors [9]. Beyond that, the

rapid evolution of database technologies such as columnar

storage engines, in-memory processing and cloud-native

architectures means that old ideas about how best to

handle dimensions need to be revisited. When

organizations are designing new data warehouses or

updating older data warehouse systems they require

empirically-based guidance on how to select dimensional

history management techniques that will be the most

effective for their workload and performance targets [10].

To address these shortcomings, this paper performs a

systematic comparison of hash-based and surrogate key

methods to maintain dimensional history in the context of

modern data warehousing. We consider architectural

design, complexity of implementation, ETL processing

performance, query execution efficiency, storage

requirements and scalability allure. By creating controlled

experimental setups based on typical industry

benchmarks and with real-world workload characteristics,

we present empirical evidence to quantify trade-offs

associated to each of them. Instead of relying on intuition

or vendor recommendations, the findings enable data

warehouse architects and practitioners to make informed

decisions with an understanding of what impact those

decisions will have on performance.

The remainder of this paper goes as follows: In Section 2,

we review relevant literature which discusses dimensional

modeling methodologies, historical change management

approaches and data warehousing performance improving

techniques. We describe our research methods in Section

3. These contain architectural details of the two methods

and the experiments design, along with metrics for

performance and testing. There is a wealth of information

in Section 4 about our experimental results, but also plenty

of discussion about what those experimental results

actually imply for practitioners. The final subsection of

Section 5 is a conclusion that includes major findings and

suggestions which architectures are more suitable in

different heterogeneous deployment situation, and

directions for further research from the aspect of

dimensional history management.

2. Literature Review

2.1-Dimensional Modeling Foundations

The concepts behind dimensional modeling have evolved

considerably since the ’80s when decision support

systems first appeared. The initial research indicated a

fundamental difference between two types of databases:

normalized operational ones are good with transactions,

denormalized analytical ones are good with queries. The

star schema emerged as the dominant way to present data,

with fact tables in the center surrounded by dimension

tables containing descriptive properties. This architecture

favors simplicity and speed of query over storage

optimization, which is consistent with how analytical

workloads are usually structured. Later developments

included snowflake schemas with normalized dimension

hierarchies and galaxy schemas where fact tables

reference more than one dimension table. These increased

flexibility in the representation of dimensional designed

to meet complex analytic requirements [11]. The idea

behind dimensional modeling totally transformed the

way organizations think about analytical databases—they

lined up technical constructs with business objectives.

This enabled non-technical users to write analytical

queries, and performance of queries was enhanced thanks

to denormalization techniques [12].

2.2 Slowly Changing Dimension Techniques

Classifying slow changing dimension methodologies

resolved us the way of how to handle time-changing in

DW. Type 1 SCD modifies existing numbers of attributes

so eliminates any previous states. Type 2 SCD detail all

historical records by writing new dimension rows for

each change, complete with handy date ranges and current

record pointers. Degree-3 SCD maintains only a little

information by creating multiple columns for the historic

values of an attribute. All three techniques are better

adapted to addressing particular analytic requirements.

Type 2 approaches are preferred in work environments

where detailed historical analysis is indispensable (13).

With traditional approaches, hunting after changes in

attributes is a tough cookie when you need to create new

dimensional rows and maintain referential integrity on

fact tables. The amount of work required to discover such

changes grows linearly with the number of attributes that

are tracked [14]. This can be slow if the inputs are large.

2.3 Surrogate Key Architecture and Implementation

Patterns for implementation usually include sequence

generators that give numbers that keep going up, lookup

tables that connect business keys to current surrogate

identifiers, and ETL logic that manages key assignment

during dimensional processing [15]. There are pros and

cons to each performance trait. When you use small

integer keys for index structures and comparison

operations, join operations work much better. However,

the need to traverse lookup tables during ETL processing

adds delay, especially in systems that process a lot of

changes at once. There is still a small amount of extra

storage needed, but having different lookup tables and

indexes for them increases that need [16].

2.4 Hash-Based Approaches and Data Vault

Methodology

How to cite : Mr. Reddaiah Kasturi, Mr. Raghavendar Nellikondi, Managing Dimensional History in Data Warehouses A

Comparative Analysis of Hash-Based and Surrogate Key Approaches. Advances in Consumer Research. 2024;1(1): 28-35

Advances in Consumer Research 30

A big difference from the old way of doing is with

surrogate Keys, is that we are seeing hash-based

dimensional identification become more widespread

which leverage on hashing functions to output

deterministic keys based on business attributes. The Data

Vault modeling methodology was the pioneer of

intentionally utilizing hashing in corporate data

warehousing. It did so by applying the MD5 and SHA-256

algorithms to produce unique identifiers which naturally

exhibit state in a dimensional way. This approach

eliminates the use of lookup tables by computing hash

values directly from source attributes. This enables

multiple tasks to run concurrently without additional

coordination work, and it simplifies ETL architectures

[17]. The way hash-based change detection reduces

attribute comparison to a single hash value comparison

helps algorithms to be more efficient, and that is one of

the key for many trackable attributes on dimensions. So

there are pluses and minuses in using 32-byte hash values

in reality instead of integer keys [18].

3. Methodology

3.1 Research Design and Approach

An experimental investigation is employed to evaluate

hash-based and surrogate key monitors of dimensions in

the context of data warehouse. The study combines

quantitative and qualitative analysis of the outcomes, and

implementation characteristics. Our approach involves

designing and implementing two parallel data

warehouse/mart architectures, one for each of the goal

approaches. Finally, we evaluate them under the

laboratory prototype. The experimental environment is

based on standard TPC-H datasets scaled at different

volumes. This allows for a complete study of a variety of

operational situations.

A well-defined six-step approach leads the research

methodology. We begin by describing the theoretical

frameworks and architectural constraints of both

approaches. We then implement prototype systems for

each technique in the same hardware and software

environment to confirm validity of our experiments. For

the third phase, performance is evaluated in a methodical

fashion against predefined metrics like query response

time and ETL processing time, storage consumption, and

how accurate change detection can be. Finally, we

compare all the data in order to extract important insights

and useful suggestions.

3.2 Architecture of the Proposed System

The proposed architecture includes two separate but

essentially identical data warehouse implementations that

are meant to make it easier to compare the hash-based and

surrogate key approaches directly. Both architectures

have a three-tier structure with source systems, an ETL

processing layer, and an analytical data warehouse layer.

This makes sure that the experimental conditions are the

same and that the dimensional management technique is

the only variable that matters.

3.2.1 Hash-Based Architecture

The hash-based design manages multiple dimensions of

history by using cryptographic hash generation and

comparison tools. Using hash values from dimensional

attributes as natural identifiers for change detection and

version tracking gets rid of the need for standard surrogate

key lookup tables. Figure 1shows the Hash-Based

dimensional history Architecture.

Data Source Layer: The source layer is made up of

operational databases that store transactional records that

have characteristics that can change over time. Among the

types of physical data that source systems provide are

information about customers, products, suppliers, and

timestamps. Based on last-modified timestamps or other

change data capture methods, the extraction process takes

both full snapshots and small changes.

Hash Generation Module: This module calculates the

cryptographic hash value for each dimensional record. It

is the heart of the hash-based method. When attribute

values are joined together, the hash function creates fixed-

length numbers that uniquely represent dimensional

states. For hash generation, we use the SHA-256 method

because it is reliable against collisions and quick to run.

Equation (1) shows how the process of making a hash can

be written:

(1)

where H(d) represents the hash value for dimension record

d, aᵢ denotes individual attributes, and || represents string

concatenation. This deterministic function ensures that

identical attribute combinations always produce identical

hash values, enabling automatic change detection through

hash comparison.

Change Detection Engine: The source cache provides

the newly computed hash values that the change detection

engine compares to the previously stored hash values in

the dimensional table for changes. When a hash difference

exists, versioning begins - the system knows that there is

a change in dimensions. The reasoning for search of

changes can be expressed as equation (2):

(2)

where Δ(d) is a binary indicator of dimensional change.

This mechanism eliminates the need for explicit attribute-

by-attribute comparison, significantly reducing

computational overhead during ETL processing.

Dimension History Table: Historical dimension table

maintains historical details about time and hash values

serve as natural key for looking up changes. The record

also contains the Hhash value, and full dimensional

properties, effective dates, and version indicators as well.

The structure for the table lends itself to Type 2 Slowly

Changing Dimensions by simply maintaining all prior

versions Data can be easily retrieved and joined with

other data via the hash value.

Fact Table Integration: Fact tables refer to dimensional

records through hash values, not typical surrogate keys.

This also simplifies the ETL logic by avoiding lookup

operations during fact load. To do a join, hash use foreign

How to cite : Mr. Reddaiah Kasturi, Mr. Raghavendar Nellikondi, Managing Dimensional History in Data Warehouses A

Comparative Analysis of Hash-Based and Surrogate Key Approaches. Advances in Consumer Research. 2024;1(1): 28-35

Advances in Consumer Research 31

key links directly and it is really hard to make a join

operation as follows: (3)

(3)

where n represents fact table cardinality, m represents

dimension table cardinality, and the logarithmic

component reflects hash-based index efficiency.

Figure 1: Hash-Based dimensional history Architecture.

3.2.2 Surrogate Key Architecture

The surrogate key design in Figure 2 handles dimensional

history using system-generated sequential keys and

explicit change tracking capabilities. This old-style way

of doing persists the surrogate values that are not

associated with business attributes. To detect changes and

accommodate versions, it require lookup tables and

additional ETL logic.

Data source Layer : The original layer required current

data for dimensional analysis like the hash-based design.

In order to provide for comparability of experimental

results the extraction method is kept constant.

Surrogate Key Generator – This flow creates a file with

sequential integers to be used as the primary keys for

dimension records. The creator is vigilant about keeping

atomic countermeasures to ensure that all versions are

unique. Equation (4) describes the process of assigning a

substitute key:

(4)

where SK(d) is the new surrogate key and MAX(SK) is

the max number of an existing surrogat key. Generation

of the keys is predictable with this method, and does not

increase computational load a great deal, but it requires

management of permanent state.

Attribute Comparison Module: To detect changes in the

surrogate key structures, it is required to compare source

records versus actual dimensional data at the attribute

level. The module iterates through each attribute and

looks for modifications that trigger a new version to be

created. Where 5 shows to write comparison complexity.

(5)

where C(d) is the total number of comparisons for record

d in the dimension and n is the number of characteristics

that can be tracked. This method requires more computing

power than hash-based ones, especially for dimensions

with lots of characteristics.

Dimension Lookup Table: The lookup table keeps track

of links between business keys and current surrogate key

values, which makes it easier to load facts from other

tables. This extra structure takes up extra space and needs

to be maintained when the dimensions are changed. This

lookup table has to be traversed by query operations,

which slows down ETL processes.

SCD Type 2 Implementation: The Slowly Changing

Dimension Type 2 solution keeps historical records safe

by adding new rows for changed dimensions while

keeping indicators of temporal validity. There are

effective start dates, end dates, and present record flags in

each version. Surrogate keys are used in the fact table, and

historical analysis gets the right versions depending on the

time frame.

Fact Table Integration: In fact tables, there are substitute

key references that need to be looked up during the load

process. Before adding facts, the ETL process needs to

search the dimension lookup table for business keys and

surrogate keys. Equation (6) can be used to describe this

extra step as:

(6)

where FK(f) represents the foreign key for fact record f,

BK(f) denotes the business key, and DIM_LOOKUP

represents the lookup table operation.

How to cite : Mr. Reddaiah Kasturi, Mr. Raghavendar Nellikondi, Managing Dimensional History in Data Warehouses A

Comparative Analysis of Hash-Based and Surrogate Key Approaches. Advances in Consumer Research. 2024;1(1): 28-35

Advances in Consumer Research 32

Figure 2: Surrogate Key Dimensional History

Architecture.

3.3 Performance Evaluation Framework

The performance evaluation methodology defines

common benchmarks and metrics that will compare the

two architectural paradigms. We prepare comprehensive

test cases which load the initial data, make minor changes

at different frequencies, execute complex analytical

queries, and run multiple tasks simultaneously as in

production use. We execute each of them multiple times

for each test case to ensure statistical soundness, and we

measure a number of performance indicators such as

execution time, resource utilization and accuracy.

Automated experimental data collection tools are

employed to record detailed performance statistics during

experiment runs within the evaluation framework. This

makes deep comparisons over large sets of system

behavior variables possible.

3.4 Setting up the experiments and collecting data

To muck off the differences of infrastructure as well, we

are provided with the same hardware specification in

experimental environment, such as 32GB Memory, 8-core

CPU and SSD. In order to compare against each other

successfully, both designs rely on PostgreSQL database

management systems with the same configuration

settings. We create fake datasets using TPC-H benchmark

specs scaled to 10GB, 50GB, and 100GB data sizes with

which we illustrate the effects on scalability. In

dimensional data, there exist the dimensions of

customers, products and suppliers; attribute distributions

and change tendencies are directly related to real business

circumstances.

4. Results and Discussion

4.1 Performance Comparison Results

The experimental testing of both dimensional methods to

history management shows big differences in how well

they work across a number of operational areas. Our

structured testing with different amounts of data and

workloads gives us a full picture of how design choices

affect real-world data warehouse setting are shown in

table 1.

Table 1: ETL Performance Metrics Comparison

Metric Hash-

Based

Approac

h

Surrogat

e Key

Approac

h

Performanc

e Delta

Initial Load

Time

(10GB)

142

seconds

189

seconds

33.1% faster

Initial Load

Time

(50GB)

698

seconds

1,021

seconds

46.3% faster

Initial Load

Time

(100GB)

1,456

seconds

2,187

seconds

50.2% faster

Incremental

Update (1%

change)

8.3

seconds

14.7

seconds

77.1% faster

Incremental

Update (5%

change)

41.2

seconds

73.4

seconds

78.2% faster

Incremental

Update

(10%

change)

84.5

seconds

148.9

seconds

76.2% faster

Change

Detection

Time

2.1

seconds

9.8

seconds

366.7%

faster

Memory

Consumptio

n (GB)

4.2 6.8 38.2% less

Performance of ETL This performance test of ETL proves

the hash-based method is significantly better in all cases

we experimented. First Load Actions Always

WinAlways, by 3-5%If you look at the amount of data

being loaded, it magnifies with more. This scaling

characteristic indicates that hash-based methods retain

their efficiency gains as the size of the warehouse grows,

an important consideration for commercial deployments.

Even greater improvements emerge for incremental

updating tasks, where hash-based change detection

reduces processing effort by an average of 77%. The much

larger 367% drop in change detection time is the result of

How to cite : Mr. Reddaiah Kasturi, Mr. Raghavendar Nellikondi, Managing Dimensional History in Data Warehouses A

Comparative Analysis of Hash-Based and Surrogate Key Approaches. Advances in Consumer Research. 2024;1(1): 28-35

Advances in Consumer Research 33

standard surrogate key architectures having to perform

attribute by attribute comparison logic.

Table 2: Query Performance and Storage Analysis

Metric Hash-

Based

Approac

h

Surrogat

e Key

Approac

h

Performanc

e Delta

Simple Join

Query (ms)

234 187 25.1%

slower

Complex

Aggregation

(ms)

1,842 1,456 26.5%

slower

Historical

Point Query

(ms)

45 38 18.4%

slower

Temporal

Range

Query (ms)

892 734 21.5%

slower

Dimension

Table Size

(GB)

12.4 11.8 5.1% larger

Fact Table

Size (GB)

87.6 86.2 1.6% larger

Index Size

(GB)

8.9 7.4 20.3% larger

Total

Storage

(GB)

108.9 105.4 3.3% larger

Query

Optimizatio

n Score

7.2/10 8.6/10 16.3% lower

An investigation of the query speed follows a different

pattern: for all queries, surrogate key approach is faster in

execution. Plain join operations perform about 25%

better using integer surrogate keys as opposed to hash-

based string values. That's because database optimizers

love those small numeric types. These advantages extend

to complex aggregation queries as well, which benefit

from fewer things that need to be compared and better

indices. The assessment of storage in Figure 7.3 indicates

that only minor differences exist between the methods.

For instance, since the keys are longer in hash-based PSQs

they require an additional 3% space. The 20% larger index

is because SHA-256 hash strings have a larger length

than sequential integers. This extra distance is acceptable,

however, in view of the total size of the warehouse as

indicated in Table 2.

Figure 3: ETL Processing Time Comparison Across Data

Volumes.

Figure 3 illustrates the scalability of both methods from

10 Gb to 100 Gb data. The hash-based methods show

better linear scalability and a flatter slope, when the

surrogate key based method suffers from more processing

overhead, as increases. The varying lines with differing

colors, demonstrate that the hash-based methods improve

performance as the size of the warehouse grows. This

makes them ideal for ETL-heavy workloads in large

business deployments.

Figure 4: Query Response Time Distribution by Query

Type.

We compare the performance of five different query types

in Fig 4: Simple joins, Complex aggregations, Historical

point queries, Temporal range queries and

multidimensional analytics. In general, the stacked bar

chart compiles evidence to show that surrogate key

approaches are invariably superior for all question types

by large margins (15-30%). This is the tradeoff that

builders can decide to take or make when selecting

dimensional management strategy – ETL processing

speed vs query speed.

How to cite : Mr. Reddaiah Kasturi, Mr. Raghavendar Nellikondi, Managing Dimensional History in Data Warehouses A

Comparative Analysis of Hash-Based and Surrogate Key Approaches. Advances in Consumer Research. 2024;1(1): 28-35

Advances in Consumer Research 34

Figure 5: Storage Utilization Breakdown by Component.

Figure 5 provides an in-depth look at the amount of space

consumed by some of the components within a

warehouse, including: dimension tables, fact tables,

indexes and metadata structures. Comparing via stacked

bars shows that hash-based approaches do require more

storage but not by much: about 3% of the total

warehouse. The one type of variation in storage

requirement comes from the index structures, as these

contribute most to the extra space required by hash-based

implementations.

4.2 Discussion of Findings

Test results demonstrate there are fundamental trade-offs

in how to manage dimensional history that directly

impact design decisions. If your priority in ETL is change

detection and data loading speed, you’ll be better off with

hash-based strategies. On the contrary, surrogate key

methods fit better for analytical jobs with many queries.

Because the contrasts in speed are so large, workload

characteristics should determine architecture choice

rather than relying on universal best practices.

The real performance gains in ETL that hash-based

techniques provide are achieved by not requiring you to

write any explicit change detection logic, load lookup

table lookups when processing dimensions. Hash based

detection of change reduces comparing the multiple

attribute with a single hash value. This simplifies the

method and leads to very large time savings in

calculations. For those businesses with a high volume of

dimensional refreshes, an average 77% incremental

reprocessing speedup is highly valuable (operational

value). Surrogate key solutions simply run faster for

queries because they are a basic database optimization

technique that will often choose continuous integer

values over variable-length string hashes. For accelerating

join evaluations, contemporary query optimizers benefit

from integer key properties such as the ability of

predictable memory layout and efficient comparison

operations. A 25% difference in query performance

maybe the answer for businesses where fast analytical

queries are more important than efficient ETL times.

Storage overhead analysis demonstrates that hash-based

techniques require only a small amount of extra space (

3% relative to the total warehouse size). SHA-256 hash

result has 32 bytes length Integer replacement keys are

only 4 or 8 bytes in size. Although at the fact table level

you don’t see this extra space. The scalability study

indicates that, the hash-based methods have a better

scaling behavior with increasing data size, and the

performance gains further increase as is increased. That

behavior indicates that for companies that anticipate a lot

of growth in their data, hash-based methods become more

attractive. In reality, rollout decisions go beyond

performance. There are also factors involving how

difficult implementation is and how easily it can be

maintained. Hash-based approaches remove the reliance

on lookup tables, thus simplifying ETL codebases and it

also enables parallel processing without the need to do

additional coordination. Surrogate key technique is the

best. If it uses many tools and its well-known design

pattern then, also data warehouse experienced

professional easy to work with that.

5. Conclusion

The effect of hash-based and surrogate key on DW

dimensional history This study compares two approaches

to the updated map management in a DW, i.e. It

demonstrates that there are trade-offs at play which really

impact design decisions. The test results demonstrate that

the hash-based approach is very good during ETL

processing. They increase the incremental update speed

by 77% on average and significantly reduce the change

detection overhead by removing the attribute-level

comparison logic. Since the hash generation is

deterministic, this makes ETL architecture simpler by

eliminating lookup tables and allowing for fast parallel

processing without signal collaboration. Instead,

surrogate key methods consistently outperform even the

best NATURAL KEY method on queries by about 25%

due to database optimizers and their use of compact

integer keys and index structures.

The analysis of storage indicates overhead is similar,

within 3%. Which is to say that storage considerations

should not be the primary focus of architectural decisions,

given the declining cost of storage relative to computing.

The scaling aspect makes hash-based implementations

more suitable for larger batches of data, and the

performance benefits increase as a warehouse grows

bigger. Hash-based approaches should be considered by

those organizations wishing to reduce the overhead of

ETL and keep architecture straightforward. This is

particularly applicable for those handling dynamic

dimensionality or setting up distributed processing

frameworks. Alternatively, surrogate key methods are

good for analytical workloads which have high queries

and less volatile dimensions. Hybrid architectures that

mesh hash-based change detection with surrogate key

query optimization are a topic for further research. These

might be the best-performant ones for ETL as well as

analytics, and could evolve to accommodate changing

requirements such as those required of real-time data

warehouses.

How to cite : Mr. Reddaiah Kasturi, Mr. Raghavendar Nellikondi, Managing Dimensional History in Data Warehouses A

Comparative Analysis of Hash-Based and Surrogate Key Approaches. Advances in Consumer Research. 2024;1(1): 28-35

Advances in Consumer Research 35

REFERENCES

1. Raj, A.; Bosch, J.; Olsson, H.H.; Wang, T.J.

Modelling Data Pipelines. In Proceedings of the 2020

46th Euromicro Conference on Software Engineering

and Advanced Applications (SEAA), Portoroz,

Slovenia, 26–28 August 2020; IEEE: Piscataway, NJ,

USA, 2020; pp. 13–20. [Google Scholar] [CrossRef]

2. Sullivan, D. Designing Data Pipelines. In

Official Google Cloud Certified Professional Data

Engineer Study Guide; Wiley: Hoboken, NJ, USA,

2020; pp. 61–88. [Google Scholar] [CrossRef]

3. Oleghe, O.; Salonitis, K. A framework for

designing data pipelines for manufacturing systems.

Procedia CIRP 2020, 93, 724–729. [Google Scholar]

[CrossRef]

4. Munappy, A.R.; Bosch, J.; Olsson, H.H. Data

Pipeline Management in Practice: Challenges and

Opportunities. In Product-Focused Software Process

Improvement, Proceedings of the 21st International

Conference, PROFES 2020, Turin, Italy, 25–27

November 2020; Lecture Notes in Computer Science;

Springer: Cham, Switzerland, 2020; pp. 168–184.

[Google Scholar] [CrossRef]

5. Kimball, R.; Ross, M. The Kimball Group

Reader: Relentlessly Practical Tools for Data

Warehousing and Business Intelligence; Wiley:

Hoboken, NJ, USA, 2016. [Google Scholar]

6. Dupor, S.; Jovanovi, V. An approach to

conceptual modelling of ETL processes. In

Proceedings of the 37th International Convention on

Information and Communication Technology,

Electronics and Microelectronics (MIPRO), Opatija,

Croatia, 26–30 May 2014; IEEE: Piscataway, NJ,

USA, 2014. [Google Scholar] [CrossRef]

7. Biswas, N.; Chattapadhyay, S.; Mahapatra, G.;

Chatterjee, S.; Mondal, K.C. A New Approach for

Conceptual Extraction-Transformation-Loading

Process Modeling. Int. J. Ambient. Comput. Intell.

2019, 10, 30–45. [Google Scholar] [CrossRef]

8. Simitsis, A.; Vassiliadis, P.; Terrovitis, M.;

Skiadopoulos, S. Graph-Based Modeling of ETL

Activities with Multi-level Transformations and

Updates. In Data Warehousing and Knowledge

Discovery, Proceedings of the 7th International

Conference, DaWak 2005, Copenhagen, Denmark,

22–26 August 2005; Springer: Berlin/Heidelberg,

Germany, 2005; pp. 43–52. [Google Scholar]

[CrossRef]

9. Trujillo, J.; Luján-Mora, S. A UML Based

Approach for Modeling ETL Processes in Data

Warehouses. In Conceptual Modeling—ER 2003,

Proceedings of the 22nd International Conference on

Conceptual Modeling, Chicago, IL, USA, 13–16

October 2003; Lecture Notes in Computer Science;

Springer: Berlin/Heidelberg, Germany, 2003; Volume

2813, pp. 307–320. [Google Scholar]

10. Ma, R.; Zhang, L.; Wu, Q.; Mu, Y.; Rezaeibagha,

F. Be-trdss: Blockchain-enabled secure and efficient

traceable-revocable data-sharing scheme in industrial

internet of things. IEEE Trans. Ind. Inform. 2023, 19,

10821–10830. [Google Scholar] [CrossRef]

11. Jung, T.; Li, X.Y.; Huang, W.; Qian, J.; Chen, L.;

Han, J.; Hou, J.; Su, C. Accounttrade: Accountable

protocols for big data trading against dishonest

consumers. In Proceedings of the IEEE INFOCOM

2017-IEEE Conference on Computer

Communications, Atlanta, GA, USA, 1–4 May 2017;

pp. 1–9. [Google Scholar]

12. Wu, H.; Li, H.; Luo, X.; Jiang, S. Blockchain-

Based Onsite Activity Management for Smart

Construction Process Quality Traceability. IEEE

Internet Things J. 2023, 10, 21554–21565. [Google

Scholar] [CrossRef]

13. Jiang, S.; Cao, J.; Tung, C.L.; Wang, Y.; Wang,

S. Sharon: Secure and Efficient Cross-shard

Transaction Processing via Shard Rotation. In

Proceedings of the IEEE INFOCOM 2024-IEEE

Conference on Computer Communications,

Vancouver, BC, Canada, 20–23 May 2024; pp. 2418–

2427. [Google Scholar]

14. Chen, H.; Pendleton, M.; Njilla, L.; Xu, S. A

survey on ethereum systems security: Vulnerabilities,

attacks, and defenses. ACM Comput. Surv. 2020, 53,

1–43. [Google Scholar] [CrossRef]

15. Wu, H.; Cao, J.; Yang, Y.; Tung, C.L.; Jiang, S.;

Tang, B.; Liu, Y.; Wang, X.; Deng, Y. Data

management in supply chain using blockchain:

Challenges and a case study. In Proceedings of the

2019 28th International Conference on Computer

Communication and Networks (ICCCN), Valencia,

Spain, 29 July–1 August 2019; pp. 1–8. [Google

Scholar]

16. Lo, L.S. The CLEAR Path: A Framework for

Enhancing Information Literacy Through Prompt

Engineering. The Journal of Academic Librarianship

2023, 49, 102720. [Google Scholar] [CrossRef]

17. Ahmed, T.; Pai, K.S.; Devanbu, P.; Barr, E.

Improving Few-Shot Prompts with Relevant Static

Analysis Products. arXiv 2023, arXiv:2304.06815.

Available online: https://arxiv.org/abs/2304.06815

(accessed on 20 May 2025).

18. Khattak, M.U.; Rasheed, H.; Maaz, M.; Khan, S.;

Khan, F.S. MaPLe: Multi-modal Prompt Learning. In

Proceedings of the 2023 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR),

Vancouver Convention Center, Vancouver, BC,

Canada, 18–22 June 2023; pp. 19113–19122. [Google

Scholar]

.

.

