Advances in Consumer Research

https://acr-journal.com/

Original Researcher Article

Volume-1 | Issue-1 | Jan 2024

Managing Dimensional History in Data Warehouses A Comparative Analysis of
Hash-Based and Surrogate Key Approaches

Mr. Reddaiah Kasturi',
Independent researcher,

Mr. Raghavendar Nellikondi?
Sterling VA, USA.

Email ID : Reddaiah.Kasturi@yahoo.com

’Independent researcher,

Sterling, VA, USA,

Email ID : raghav.nellikondi@gmail.com

ABSTRACT

This paper will take on the ongoing discrepancy between the competencies that are taught to
This paper compares the main two ways of keeping the dimensional history within a data store:
Hash based approaches and Surrogate key type methods. Companies are using historical data
increasingly for analytics and decision-making. Selection criteria on dimension management
strategy is crucial to warehousing performance and maintenance. The hash-based approaches
employ cryptography in order to process-dimensional attributes to generate distinctive
identifiers. This allows changes to be discovered automatically and versioning to be retained
without always maintaining additional lookup tables. Surrogate key approaches in contrast
utilize sequentially generated system identifiers to monitor the evolution of dimensions through
time. These methods typically involve the use of Slowly Changing Dimension (SCD) patterns.
The work compares the two methods on a number of dimensions, including how difficult they
are to implement, how well they support queries, how well they compress storage space after
being implemented and how well they find differences, as well as scale. We evaluate the trade-
off between these two approaches for different workloads and data sizes through experiments
based on popular industry benchmarks. Using hash-based methods is better in detecting changes
and simplifying ETL, while the proxy key approach is good at query optimization and easier to
manage relationships. The study provides useful advice to data warehouse architects - for the
first time through knowing when each method is more suitable. This allows them to make
intelligent decisions that align with the realities of their business and the constraints of their
technology..

Keywords: Data Warehouse, Dimensional History Management, Hash-Based Approach,

Surrogate Key, Slowly Changing Dimensions..

1. INTRODUCTION:

Obsolete Data warchouses are an integral part of the
infrastructure of modern businesses; as the amount of data
grows considerably and business intelligence
requirements become more complex. Modern DW
systems must store not only large amounts of data, but also
full historic versions (for time analysis as well as to
comply with legal requirements) [1]. As the big
businesses are transitioning to data-driven decision-
making, the design of a data warehouse is being subjected
to an unparalleled trauma due to speed and analytical
agility. The tracking of dimensional history, i.e., how
business units have evolved over time, soon becomes a
major issue that in turn has profound implications on the
warehouse performance, storage efficiency and
complexity of the queries [2].

Dimensional design is the heart of a Data Warehouse. It
aggregates data to fact tables as quantifiable business
measures and to dimension tables holding the context for
analysis [3]. But business is no lap dog and never
becomes static. For instance, the addresses of customers
change, product specifications change, supplier
relationships change and organizational structures are
subject to constant amendment. One of the most difficult

Advances in Consumer Research

technical challenges in building a data warchouse is
aggregating this information over time while supporting
fast query access and ensuring accurate results [4]. By the
way that you architect it on how you manage dimensional
history is going to permeate throughout your entire
warehouse. These decisions have far reached
implications, especially around the complexity of ETL
logic that needs to be performed, how much storage is
needed and performance of queries and last but not the
least business tools that can be used by end-users.

Conventionally, the approach to dealing with dimensional
history has been via surrogate key techniques whereby
sequential numbers assigned by the system are assigned
as primary keys regardless of a business meaningful
value [5]. For security full history records, this popular
model employs Type 2 Slowly Changing Dimension
(SCD) patterns implemented to maintain row version. As
for the surrogate key designs, they require a lookup table
and an attribute-level comparison to find changed records
and managing the surrogate key assignment among
multiple ETL processes [6]. For all the decades of
improvement and variety of tool support, though, these
methods make the architecture more complex and slow
things down — a bigger deal when data sizes reach
petabyte scale.

28

https://acr-journal.com/
https://acr-journal.com/
https://acr-journal.com/
mailto:Reddaiah.Kasturi@yahoo.com
mailto:raghav.nellikondi@gmail.com

How to cite : Mr. Reddaiah Kasturi, Mr. Raghavendar Nellikondi, Managing Dimensional History in Data Warehouses A
Comparative Analysis of Hash-Based and Surrogate Key Approaches. Advances in Consumer Research.2024;1(1): 28-35

Recent advancements in computer science and encryption
techniques now enable us to utilize hash functions in
novel ways for handling dimensional data. Hash-based
techniques Cryptographic algorithms, such as SHA-256,
are employed to convert the dimensional traits into
deterministic identifiers. This results in natural keys
displaying dimensions state naturally [7]. This paradigm
shift eliminates the extra work required on the backbone
side to create surrogate key and maintain look up tables.
It also enables automatic discovery of comparing changes
by simple hash comparison mechanisms. Since hash
generation is deterministic, it can be done in parallel
without coordination thus could be very useful for
distributed data warehouse designs [8].

Despite the theoretical sounds, here’s really not that
much research/science that shows how these methods
compare against the well-known surrogate key handling
techniques to date. Much research focus on some part of
the process like speed of ETL or optimizing query without
considering all operational factors [9]. Beyond that, the
rapid evolution of database technologies such as columnar
storage engines, in-memory processing and cloud-native
architectures means that old ideas about how best to
handle dimensions need to be revisited. When
organizations are designing new data warchouses or
updating older data warchouse systems they require
empirically-based guidance on how to select dimensional
history management techniques that will be the most
effective for their workload and performance targets [10].

To address these shortcomings, this paper performs a
systematic comparison of hash-based and surrogate key
methods to maintain dimensional history in the context of
modern data warehousing. We consider architectural
design, complexity of implementation, ETL processing
performance, query execution efficiency, storage
requirements and scalability allure. By creating controlled
experimental setups based on typical industry
benchmarks and with real-world workload characteristics,
we present empirical evidence to quantify trade-offs
associated to each of them. Instead of relying on intuition
or vendor recommendations, the findings enable data
warehouse architects and practitioners to make informed
decisions with an understanding of what impact those
decisions will have on performance.

The remainder of this paper goes as follows: In Section 2,
we review relevant literature which discusses dimensional
modeling methodologies, historical change management
approaches and data warehousing performance improving
techniques. We describe our research methods in Section
3. These contain architectural details of the two methods
and the experiments design, along with metrics for
performance and testing. There is a wealth of information
in Section 4 about our experimental results, but also plenty
of discussion about what those experimental results
actually imply for practitioners. The final subsection of
Section 5 is a conclusion that includes major findings and
suggestions which architectures are more suitable in
different heterogeneous deployment situation, and
directions for further research from the aspect of
dimensional history management.

2. Literature Review

2.1-Dimensional Modeling Foundations

The concepts behind dimensional modeling have evolved
considerably since the ’80s when decision support
systems first appeared. The initial research indicated a
fundamental difference between two types of databases:
normalized operational ones are good with transactions,
denormalized analytical ones are good with queries. The
star schema emerged as the dominant way to present data,
with fact tables in the center surrounded by dimension
tables containing descriptive properties. This architecture
favors simplicity and speed of query over storage
optimization, which is consistent with how analytical
workloads are usually structured. Later developments
included snowflake schemas with normalized dimension
hierarchies and galaxy schemas where fact tables
reference more than one dimension table. These increased
flexibility in the representation of dimensional designed
to meet complex analytic requirements [11]. The idea
behind dimensional modeling totally transformed the
way organizations think about analytical databases—they
lined up technical constructs with business objectives.
This enabled non-technical users to write analytical
queries, and performance of queries was enhanced thanks
to denormalization techniques [12].

2.2 Slowly Changing Dimension Techniques

Classifying slow changing dimension methodologies
resolved us the way of how to handle time-changing in
DW. Type 1 SCD modifies existing numbers of attributes
so eliminates any previous states. Type 2 SCD detail all
historical records by writing new dimension rows for
each change, complete with handy date ranges and current
record pointers. Degree-3 SCD maintains only a little
information by creating multiple columns for the historic
values of an attribute. All three techniques are better
adapted to addressing particular analytic requirements.
Type 2 approaches are preferred in work environments
where detailed historical analysis is indispensable (13).
With traditional approaches, hunting after changes in
attributes is a tough cookie when you need to create new
dimensional rows and maintain referential integrity on
fact tables. The amount of work required to discover such
changes grows linearly with the number of attributes that
are tracked [14]. This can be slow if the inputs are large.

2.3 Surrogate Key Architecture and Implementation

Patterns for implementation usually include sequence
generators that give numbers that keep going up, lookup
tables that connect business keys to current surrogate
identifiers, and ETL logic that manages key assignment
during dimensional processing [15]. There are pros and
cons to each performance trait. When you use small
integer keys for index structures and comparison
operations, join operations work much better. However,
the need to traverse lookup tables during ETL processing
adds delay, especially in systems that process a lot of
changes at once. There is still a small amount of extra
storage needed, but having different lookup tables and
indexes for them increases that need [16].

2.4 Hash-Based Approaches and Data Vault
Methodology

Advances in Consumer Research

29

How to cite : Mr. Reddaiah Kasturi, Mr. Raghavendar Nellikondi, Managing Dimensional History in Data Warehouses A
Comparative Analysis of Hash-Based and Surrogate Key Approaches. Advances in Consumer Research. 2024;1(1): 28-35

A big difference from the old way of doing is with
surrogate Keys, is that we are seeing hash-based
dimensional identification become more widespread
which leverage on hashing functions to output
deterministic keys based on business attributes. The Data
Vault modeling methodology was the pioneer of
intentionally utilizing hashing in corporate data
warehousing. It did so by applying the MD5 and SHA-256
algorithms to produce unique identifiers which naturally
exhibit state in a dimensional way. This approach
eliminates the use of lookup tables by computing hash
values directly from source attributes. This enables
multiple tasks to run concurrently without additional
coordination work, and it simplifies ETL architectures
[17]. The way hash-based change detection reduces
attribute comparison to a single hash value comparison
helps algorithms to be more efficient, and that is one of
the key for many trackable attributes on dimensions. So
there are pluses and minuses in using 32-byte hash values
in reality instead of integer keys [18].

3. Methodology
3.1 Research Design and Approach

An experimental investigation is employed to evaluate
hash-based and surrogate key monitors of dimensions in
the context of data warehouse. The study combines
quantitative and qualitative analysis of the outcomes, and
implementation characteristics. Our approach involves
designing and implementing two parallel data
warehouse/mart architectures, one for each of the goal
approaches. Finally, we evaluate them under the
laboratory prototype. The experimental environment is
based on standard TPC-H datasets scaled at different
volumes. This allows for a complete study of a variety of
operational situations.

A well-defined six-step approach leads the research
methodology. We begin by describing the theoretical
frameworks and architectural constraints of both
approaches. We then implement prototype systems for
each technique in the same hardware and software
environment to confirm validity of our experiments. For
the third phase, performance is evaluated in a methodical
fashion against predefined metrics like query response
time and ETL processing time, storage consumption, and
how accurate change detection can be. Finally, we
compare all the data in order to extract important insights
and useful suggestions.

3.2 Architecture of the Proposed System

The proposed architecture includes two separate but
essentially identical data warehouse implementations that
are meant to make it easier to compare the hash-based and
surrogate key approaches directly. Both architectures
have a three-tier structure with source systems, an ETL
processing layer, and an analytical data warehouse layer.
This makes sure that the experimental conditions are the
same and that the dimensional management technique is
the only variable that matters.

3.2.1 Hash-Based Architecture

The hash-based design manages multiple dimensions of
history by using cryptographic hash generation and
comparison tools TJsing hash vahes from dimensional

attributes as natural identifiers for change detection and
version tracking gets rid of the need for standard surrogate
key lookup tables. Figure 1shows the Hash-Based
dimensional history Architecture.

Data Source Layer: The source layer is made up of
operational databases that store transactional records that
have characteristics that can change over time. Among the
types of physical data that source systems provide are
information about customers, products, suppliers, and
timestamps. Based on last-modified timestamps or other
change data capture methods, the extraction process takes
both full snapshots and small changes.

Hash Generation Module: This module calculates the
cryptographic hash value for each dimensional record. It
is the heart of the hash-based method. When attribute
values are joined together, the hash function creates fixed-
length numbers that uniquely represent dimensional
states. For hash generation, we use the SHA-256 method
because it is reliable against collisions and quick to run.
Equation (1) shows how the process of making a hash can
be written:

H(d) = SHA-256 (a1 || a2 || --- || @n)
(1)

where H(d) represents the hash value for dimension record
d, a; denotes individual attributes, and || represents string
concatenation. This deterministic function ensures that
identical attribute combinations always produce identical
hash values, enabling automatic change detection through
hash comparison.

Change Detection Engine: The source cache provides
the newly computed hash values that the change detection
engine compares to the previously stored hash values in
the dimensional table for changes. When a hash difference
exists, versioning begins - the system knows that there is
a change in dimensions. The reasoning for search of
changes can be expressed as equation (2):

11 ifH(dnew) 7‘_é H(dold)a

0, otherwise.

A(d) =
(2)

where A(d) is a binary indicator of dimensional change.
This mechanism eliminates the need for explicit attribute-
by-attribute ~ comparison, significantly = reducing
computational overhead during ETL processing.

Dimension History Table: Historical dimension table
maintains historical details about time and hash values
serve as natural key for looking up changes. The record
also contains the Hhash value, and full dimensional
properties, effective dates, and version indicators as well.
The structure for the table lends itself to Type 2 Slowly
Changing Dimensions by simply maintaining all prior
versions Data can be easily retrieved and joined with
other data via the hash value.

Fact Table Integration: Fact tables refer to dimensional
records through hash values, not typical surrogate keys.
This also simplifies the ETL logic by avoiding lookup
operations during fact load. To do a join, hash use foreign

Advances in Consumer Research

30

How to cite : Mr. Reddaiah Kasturi, Mr. Raghavendar Nellikondi, Managing Dimensional History in Data Warehouses A
Comparative Analysis of Hash-Based and Surrogate Key Approaches. Advances in Consumer Research.2024;1(1): 28-35

key links directly and it is really hard to make a join
operation as follows: (3)

J

A3)
where n represents fact table cardinality, m represents

dimension table cardinality, and the logarithmic
component reflects hash-based index efficiency.

Data Source Layer

{Operational Databases)

Hash Generation Module
Hig) = SHA256!a: || a: || .. | @)

Change Detection Engine

afd) = {11 Hinew) = Hiold), 0 otherwise}

>

Fact Table Integration

IHast based Forelgn Keys)

ETL Processing Layer
Tijin) = Ofn x m x logimi)

Figure 1: Hash-Based dimensional history Architecture.
3.2.2 Surrogate Key Architecture

The surrogate key design in Figure 2 handles dimensional
history using system-generated sequential keys and
explicit change tracking capabilities. This old-style way
of doing persists the surrogate values that are not
associated with business attributes. To detect changes and
accommodate versions, it require lookup tables and
additional ETL logic.

Data source Layer : The original layer required current
data for dimensional analysis like the hash-based design.
In order to provide for comparability of experimental
results the extraction method is kept constant.

Surrogate Key Generator — This flow creates a file with
sequential integers to be used as the primary keys for
dimension records. The creator is vigilant about keeping
atomic countermeasures to ensure that all versions are
unique. Equation (4) describes the process of assigning a
substitute key:

SK(d) = max(SK) + 1,

where SK(d) is the new surrogate key and MAX(SK) is
the max number of an existing surrogat key. Generation

Tioin = O(n x m x logm

of the keys is predictable with this method, and does not
increase computational load a great deal, but it requires
management of permanent state.

Attribute Comparison Module: To detect changes in the
surrogate key structures, it is required to compare source
records versus actual dimensional data at the attribute
level. The module iterates through each attribute and
looks for modifications that trigger a new version to be
created. Where 5 shows to write comparison complexity.

C(d) = Z Compare(ai,new: ai,old)

i=1
)
where C(d) is the total number of comparisons for record
d in the dimension and n is the number of characteristics
that can be tracked. This method requires more computing
power than hash-based ones, especially for dimensions
with lots of characteristics.

Dimension Lookup Table: The lookup table keeps track
of links between business keys and current surrogate key
values, which makes it easier to load facts from other
tables. This extra structure takes up extra space and needs
to be maintained when the dimensions are changed. This
lookup table has to be traversed by query operations,
which slows down ETL processes.

SCD Type 2 Implementation: The Slowly Changing
Dimension Type 2 solution keeps historical records safe
by adding new rows for changed dimensions while
keeping indicators of temporal validity. There are
effective start dates, end dates, and present record flags in
each version. Surrogate keys are used in the fact table, and
historical analysis gets the right versions depending on the
time frame.

Fact Table Integration: In fact tables, there are substitute
key references that need to be looked up during the load
process. Before adding facts, the ETL process needs to
search the dimension lookup table for business keys and
surrogate keys. Equation (6) can be used to describe this
extra step as:

FK(f) = lookup(BK(f), DIM_LOOKUP)

(6)
where FK(f) represents the foreign key for fact record f,

BK(f) denotes the business key, and DIM_LOOKUP
represents the lookup table operation.

Advances in Consumer Research

31

How to cite : Mr. Reddaiah Kasturi, Mr. Raghavendar Nellikondi, Managing Dimensional History in Data Warehouses A
Comparative Analysis of Hash-Based and Surrogate Key Approaches. Advances in Consumer Research. 2024;1(1): 28-35

Data Source Layer

(Operational Databases)

|

Surrogate Key Generator
5Kd) = MAXISK) +1

|

Attribute Comparison Module

Cid] = comparefa,new, a,0ld;

e

/

Dimension Lookup Table

(Busingss Koy« Sumogate Ky

kY

Fact Table Integration
PRIl = leokup(BKi), DIM LOOKL?)

Figure 2: Surrogate Key Dimensional History
Architecture.

3.3 Performance Evaluation Framework

The performance evaluation methodology defines
common benchmarks and metrics that will compare the
two architectural paradigms. We prepare comprehensive
test cases which load the initial data, make minor changes
at different frequencies, execute complex analytical
queries, and run multiple tasks simultaneously as in
production use. We execute each of them multiple times
for each test case to ensure statistical soundness, and we
measure a number of performance indicators such as
execution time, resource utilization and accuracy.
Automated experimental data collection tools are
employed to record detailed performance statistics during
experiment runs within the evaluation framework. This
makes deep comparisons over large sets of system
behavior variables possible.

3.4 Setting up the experiments and collecting data

To muck off the differences of infrastructure as well, we
are provided with the same hardware specification in
experimental environment, such as 32GB Memory, §-core
CPU and SSD. In order to compare against each other
successfully, both designs rely on PostgreSQL database
management systems with the same configuration
settings. We create fake datasets using TPC-H benchmark
specs scaled to 10GB, 50GB, and 100GB data sizes with
which we illustrate the effects on scalability. In
dimensional data, there exist the dimensions of
customers, products and suppliers; attribute distributions
and change tendencies are directly related to real business
circumstances.

4. Results and Discussion
4.1 Performance Comparison Results

The experimental testing of both dimensional methods to
history management shows big differences in how well
they work across a number of operational areas. Our
structured testing with different amounts of data and
workloads gives us a full picture of how design choices
affect real-world data warehouse setting are shown in
table 1.

Table 1: ETL Performance Metrics Comparison

Metric Hash- Surrogat | Performanc
Based e Key | e Delta
Approac | Approac
h h

Initial Load | 142 189 33.1% faster

Time seconds seconds

(10GB)

Initial Load | 698 1,021 46.3% faster

Time seconds seconds

(50GB)

Initial Load | 1,456 2,187 50.2% faster

Time seconds seconds

(100GB)

Incremental | 8.3 14.7 77.1% faster

Update (1% | seconds seconds

change)

Incremental | 41.2 73.4 78.2% faster

Update (5% | seconds seconds

change)

Incremental | 84.5 148.9 76.2% faster

Update seconds seconds

(10%

change)

Change 2.1 9.8 366.7%

Detection seconds seconds faster

Time

Memory 4.2 6.8 38.2% less

Consumptio

n (GB)

Performance of ETL This performance test of ETL proves
the hash-based method is significantly better in all cases
we experimented. First Load Actions Always
WinAlways, by 3-5%lf you look at the amount of data
being loaded, it magnifies with more. This scaling
characteristic indicates that hash-based methods retain
their efficiency gains as the size of the warehouse grows,
an important consideration for commercial deployments.
Even greater improvements emerge for incremental
updating tasks, where hash-based change detection
reduces processing effort by an average of 77%. The much
larger 367% drop in change detection time is the result of

Advances in Consumer Research

32

How to cite : Mr. Reddaiah Kasturi, Mr. Raghavendar Nellikondi, Managing Dimensional History in Data Warehouses A
Comparative Analysis of Hash-Based and Surrogate Key Approaches. Advances in Consumer Research. 2024;1(1): 28-35

standard surrogate key architectures having to perform
attribute by attribute comparison logic.

Table 2: Query Performance and Storage Analysis

Metric Hash- Surrogat | Performanc
Based e Key | e Delta
Approac | Approac
h h
Simple Join | 234 187 25.1%
Query (ms) slower
Complex 1,842 1,456 26.5%
Aggregation slower
(ms)
Historical 45 38 18.4%
Point Query slower
(ms)
Temporal 892 734 21.5%
Range slower
Query (ms)
Dimension 12.4 11.8 5.1% larger
Table Size
(GB)
Fact Table | 87.6 86.2 1.6% larger
Size (GB)
Index Size | 8.9 7.4 20.3% larger
(GB)
Total 108.9 105.4 3.3% larger
Storage
(GB)
Query 7.2/10 8.6/10 16.3% lower
Optimizatio
n Score

An investigation of the query speed follows a different
pattern: for all queries, surrogate key approach is faster in
execution. Plain join operations perform about 25%
better using integer surrogate keys as opposed to hash-
based string values. That's because database optimizers
love those small numeric types. These advantages extend
to complex aggregation queries as well, which benefit
from fewer things that need to be compared and better
indices. The assessment of storage in Figure 7.3 indicates
that only minor differences exist between the methods.
For instance, since the keys are longer in hash-based PSQs
they require an additional 3% space. The 20% larger index
is because SHA-256 hash strings have a larger length
than sequential integers. This extra distance is acceptable,
however, in view of the total size of the warehouse as
indicated in Table 2.

2250

~8— Hash-Based Approach
8- Sumogate Key Approach

2000

3345 laster|

=1 B z 5
2 £ = g

ETL Processing Time {seconds)
5
E]

20 a0

60 a0 100
Data Volume (GB)

Figure 3: ETL Processing Time Comparison Across Data
Volumes.

Figure 3 illustrates the scalability of both methods from
10 Gb to 100 Gb data. The hash-based methods show
better linear scalability and a flatter slope, when the
surrogate key based method suffers from more processing
overhead, as increases. The varying lines with differing
colors, demonstrate that the hash-based methods improve
performance as the size of the warehouse grows. This
makes them ideal for ETL-heavy workloads in large
business deployments.

I Hasn-Based Approach
B Sumogate Key h
- urrogaie Key Approa

187
e
]

Simple Compizx Historeal Temparal héult-Dimensional
Jon hgreqaion Boint Query Range Query Anlyles

Query Type

Figure 4: Query Response Time Distribution by Query
Type.

We compare the performance of five different query types
in Fig 4: Simple joins, Complex aggregations, Historical
point queries, Temporal range queries and
multidimensional analytics. In general, the stacked bar
chart compiles evidence to show that surrogate key
approaches are invariably superior for all question types
by large margins (15-30%). This is the tradeoff that
builders can decide to take or make when selecting
dimensional management strategy — ETL processing
speed vs query speed.

Advances in Consumer Research

33

How to cite : Mr. Reddaiah Kasturi, Mr. Raghavendar Nellikondi, Managing Dimensional History in Data Warehouses A
Comparative Analysis of Hash-Based and Surrogate Key Approaches. Advances in Consumer Research.2024;1(1): 28-35

Total Surrogate Key: 105.4 GB

a0

B Hash-Based Approach
B Surrogale Key Approach

Storage Size (GB)
5

20

nnnnnnn Indexes Meladata

ﬁwalehnuse Component
Figure 5: Storage Ultilization Breakdown by Component.

Figure 5 provides an in-depth look at the amount of space
consumed by some of the components within a
warehouse, including: dimension tables, fact tables,
indexes and metadata structures. Comparing via stacked
bars shows that hash-based approaches do require more
storage but not by much: about 3% of the total
warehouse. The one type of wvariation in storage
requirement comes from the index structures, as these
contribute most to the extra space required by hash-based
implementations.

4.2 Discussion of Findings

Test results demonstrate there are fundamental trade-offs
in how to manage dimensional history that directly
impact design decisions. If your priority in ETL is change
detection and data loading speed, you’ll be better off with
hash-based strategies. On the contrary, surrogate key
methods fit better for analytical jobs with many queries.
Because the contrasts in speed are so large, workload
characteristics should determine architecture choice
rather than relying on universal best practices.

The real performance gains in ETL that hash-based
techniques provide are achieved by not requiring you to
write any explicit change detection logic, load lookup
table lookups when processing dimensions. Hash based
detection of change reduces comparing the multiple
attribute with a single hash value. This simplifies the
method and leads to very large time savings in
calculations. For those businesses with a high volume of
dimensional refreshes, an average 77% incremental
reprocessing speedup is highly valuable (operational
value). Surrogate key solutions simply run faster for
queries because they are a basic database optimization
technique that will often choose continuous integer
values over variable-length string hashes. For accelerating
join evaluations, contemporary query optimizers benefit
from integer key properties such as the ability of
predictable memory layout and efficient comparison
operations. A 25% difference in query performance
maybe the answer for businesses where fast analytical
queries are more important than efficient ETL times.

Storage overhead analysis demonstrates that hash-based
techniques require only a small amount of extra space (
3% relative to the total warehouse size). SHA-256 hash

result has 32 bytes length Integer replacement keys are
only 4 or 8 bytes in size. Although at the fact table level
you don’t see this extra space. The scalability study
indicates that, the hash-based methods have a better
scaling behavior with increasing data size, and the
performance gains further increase as is increased. That
behavior indicates that for companies that anticipate a lot
of growth in their data, hash-based methods become more
attractive. In reality, rollout decisions go beyond
performance. There are also factors involving how
difficult implementation is and how easily it can be
maintained. Hash-based approaches remove the reliance
on lookup tables, thus simplifying ETL codebases and it
also enables parallel processing without the need to do
additional coordination. Surrogate key technique is the
best. If it uses many tools and its well-known design
pattern then, also data warechouse experienced
professional easy to work with that.

5. Conclusion

The effect of hash-based and surrogate key on DW
dimensional history This study compares two approaches
to the updated map management in a DW, ie. It
demonstrates that there are trade-offs at play which really
impact design decisions. The test results demonstrate that
the hash-based approach is very good during ETL
processing. They increase the incremental update speed
by 77% on average and significantly reduce the change
detection overhead by removing the attribute-level
comparison logic. Since the hash generation is
deterministic, this makes ETL architecture simpler by
eliminating lookup tables and allowing for fast parallel
processing without signal collaboration. Instead,
surrogate key methods consistently outperform even the
best NATURAL KEY method on queries by about 25%
due to database optimizers and their use of compact
integer keys and index structures.

The analysis of storage indicates overhead is similar,
within 3%. Which is to say that storage considerations
should not be the primary focus of architectural decisions,
given the declining cost of storage relative to computing.
The scaling aspect makes hash-based implementations
more suitable for larger batches of data, and the
performance benefits increase as a warehouse grows
bigger. Hash-based approaches should be considered by
those organizations wishing to reduce the overhead of
ETL and keep architecture straightforward. This is
particularly applicable for those handling dynamic
dimensionality or setting up distributed processing
frameworks. Alternatively, surrogate key methods are
good for analytical workloads which have high queries
and less volatile dimensions. Hybrid architectures that
mesh hash-based change detection with surrogate key
query optimization are a topic for further research. These
might be the best-performant ones for ETL as well as
analytics, and could evolve to accommodate changing
requirements such as those required of real-time data
warehouses.

Advances in Consumer Research

34

How to cite : Mr. Reddaiah Kasturi, Mr. Raghavendar Nellikondi, Managing Dimensional History in Data Warehouses A
Comparative Analysis of Hash-Based and Surrogate Key Approaches. Advances in Consumer Research.2024;1(1): 28-35

REFERENCES

1. Raj, A.; Bosch, J.; Olsson, H.H.; Wang, T.J.
Modelling Data Pipelines. In Proceedings of the 2020
46th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), Portoroz,
Slovenia, 26-28 August 2020; IEEE: Piscataway, NJ,
USA, 2020; pp. 13-20. [Google Scholar] [CrossRef]

2. Sullivan, D. Designing Data Pipelines. In
Official Google Cloud Certified Professional Data
Engineer Study Guide; Wiley: Hoboken, NJ, USA,
2020; pp. 61-88. [Google Scholar] [CrossRef]

3. Oleghe, O.; Salonitis, K. A framework for
designing data pipelines for manufacturing systems.
Procedia CIRP 2020, 93, 724-729. [Google Scholar]
[CrossRef]

4. Munappy, A.R.; Bosch, J.; Olsson, H.H. Data
Pipeline Management in Practice: Challenges and
Opportunities. In Product-Focused Software Process
Improvement, Proceedings of the 21st International
Conference, PROFES 2020, Turin, Italy, 25-27
November 2020; Lecture Notes in Computer Science;
Springer: Cham, Switzerland, 2020; pp. 168—184.
[Google Scholar] [CrossRef]

5. Kimball, R.; Ross, M. The Kimball Group
Reader: Relentlessly Practical Tools for Data
Warehousing and Business Intelligence; Wiley:
Hoboken, NJ, USA, 2016. [Google Scholar]

6. Dupor, S.; Jovanovi, V. An approach to
conceptual modelling of ETL processes. In
Proceedings of the 37th International Convention on
Information and Communication Technology,
Electronics and Microelectronics (MIPRO), Opatija,
Croatia, 26-30 May 2014; IEEE: Piscataway, NJ,
USA, 2014. [Google Scholar] [CrossRef]

7. Biswas, N.; Chattapadhyay, S.; Mahapatra, G.;
Chatterjee, S.; Mondal, K.C. A New Approach for
Conceptual Extraction-Transformation-Loading
Process Modeling. Int. J. Ambient. Comput. Intell.
2019, 10, 30-45. [Google Scholar] [CrossRef]

8. Simitsis, A.; Vassiliadis, P.; Terrovitis, M.;
Skiadopoulos, S. Graph-Based Modeling of ETL
Activities with Multi-level Transformations and
Updates. In Data Warehousing and Knowledge
Discovery, Proceedings of the 7th International
Conference, DaWak 2005, Copenhagen, Denmark,
22-26 August 2005; Springer: Berlin/Heidelberg,
Germany, 2005; pp. 43-52. [Google Scholar]
[CrossRef]

9. Trujillo, J.; Lujan-Mora, S. A UML Based
Approach for Modeling ETL Processes in Data
Warehouses. In Conceptual Modeling—ER 2003,
Proceedings of the 22nd International Conference on
Conceptual Modeling, Chicago, IL, USA, 13-16
October 2003; Lecture Notes in Computer Science;
Springer: Berlin/Heidelberg, Germany, 2003; Volume
2813, pp. 307-320. [Google Scholar]

10. Ma, R.; Zhang, L.; Wu, Q.; Mu, Y.; Rezaeibagha,
F. Be-trdss: Blockchain-enabled secure and efficient
traceable-revocable data-sharing scheme in industrial
internet of things. IEEE Trans. Ind. Inform. 2023, 19,
10821-10830. [Google Scholar] [CrossRef]

11. Jung, T.; Li, X.Y.; Huang, W.; Qian, J.; Chen, L.;
Han, J.; Hou, J.; Su, C. Accounttrade: Accountable
protocols for big data trading against dishonest
consumers. In Proceedings of the IEEE INFOCOM
2017-1EEE Conference on Computer
Communications, Atlanta, GA, USA, 1-4 May 2017,
pp- 1-9. [Google Scholar]

12. Wu, H.; Li, H.; Luo, X.; Jiang, S. Blockchain-
Based Onsite Activity Management for Smart
Construction Process Quality Traceability. IEEE
Internet Things J. 2023, 10, 21554-21565. [Google
Scholar] [CrossRef]

13. Jiang, S.; Cao, J.; Tung, C.L.; Wang, Y.; Wang,
S. Sharon: Secure and Efficient Cross-shard
Transaction Processing via Shard Rotation. In
Proceedings of the IEEE INFOCOM 2024-1EEE
Conference on Computer Communications,
Vancouver, BC, Canada, 20-23 May 2024; pp. 2418-
2427. [Google Scholar]

14. Chen, H.; Pendleton, M.; Njilla, L.; Xu, S. A
survey on ethereum systems security: Vulnerabilities,
attacks, and defenses. ACM Comput. Surv. 2020, 53,
1-43. [Google Scholar] [CrossRef]

15. Wu, H.; Cao, J.; Yang, Y.; Tung, C.L.; Jiang, S.;
Tang, B.; Liu, Y., Wang, X.; Deng, Y. Data
management in supply chain using blockchain:
Challenges and a case study. In Proceedings of the
2019 28th International Conference on Computer
Communication and Networks (ICCCN), Valencia,
Spain, 29 July—1 August 2019; pp. 1-8. [Google
Scholar]

16. Lo, L.S. The CLEAR Path: A Framework for
Enhancing Information Literacy Through Prompt
Engineering. The Journal of Academic Librarianship
2023, 49, 102720. [Google Scholar] [CrossRef]

17. Ahmed, T.; Pai, K.S.; Devanbu, P.; Barr, E.
Improving Few-Shot Prompts with Relevant Static
Analysis Products. arXiv 2023, arXiv:2304.06815.
Available online: https://arxiv.org/abs/2304.06815
(accessed on 20 May 2025).

18. Khattak, M.U.; Rasheed, H.; Maaz, M.; Khan, S.;
Khan, F.S. MaPLe: Multi-modal Prompt Learning. In
Proceedings of the 2023 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR),
Vancouver Convention Center, Vancouver, BC,
Canada, 18-22 June 2023; pp. 19113-19122. [Google
Scholar]

Advances in Consumer Research

35

