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 ABSTRACT 

This paper will take on the ongoing discrepancy between the competencies that are taught to 

This paper compares the main two ways of keeping the dimensional history within a data store: 

Hash based approaches and Surrogate key type methods. Companies are using historical data 

increasingly for analytics and decision-making. Selection criteria on dimension management 

strategy is crucial to warehousing performance and maintenance. The hash-based approaches 

employ cryptography in order to process-dimensional attributes to generate distinctive 

identifiers. This allows changes to be discovered automatically and versioning to be retained 

without always maintaining additional lookup tables. Surrogate key approaches in contrast 

utilize sequentially generated system identifiers to monitor the evolution of dimensions through 

time. These methods typically involve the use of Slowly Changing Dimension (SCD) patterns. 

The work compares the two methods on a number of dimensions, including how difficult they 

are to implement, how well they support queries, how well they compress storage space after 

being implemented and how well they find differences, as well as scale. We evaluate the trade-

off between these two approaches for different workloads and data sizes through experiments 

based on popular industry benchmarks. Using hash-based methods is better in detecting changes 

and simplifying ETL, while the proxy key approach is good at query optimization and easier to 

manage relationships. The study provides useful advice to data warehouse architects - for the 

first time through knowing when each method is more suitable. This allows them to make 

intelligent decisions that align with the realities of their business and the constraints of their 

technology.. 

Keywords: Data Warehouse, Dimensional History Management, Hash-Based Approach, 

Surrogate Key, Slowly Changing Dimensions.. 
 

1. INTRODUCTION: 

Obsolete Data warehouses are an integral part of the 

infrastructure of modern businesses; as the amount of data 

grows considerably and business intelligence 

requirements become more complex. Modern DW 

systems must store not only large amounts of data, but also 

full historic versions (for time analysis as well as to 

comply with legal requirements) [1]. As the big 

businesses are transitioning to data-driven decision-

making, the design of a data warehouse is being subjected 

to an unparalleled trauma due to speed and analytical 

agility. The tracking of dimensional history, i.e., how 

business units have evolved over time, soon becomes a 

major issue that in turn has profound implications on the 

warehouse performance, storage efficiency and 

complexity of the queries [2]. 

Dimensional design is the heart of a Data Warehouse. It 

aggregates data to fact tables as quantifiable business 

measures and to dimension tables holding the context for 

analysis [3]. But business is no lap dog and never 

becomes static. For instance, the addresses of customers 

change, product specifications change, supplier 

relationships change and organizational structures are 

subject to constant amendment. One of the most difficult 

technical challenges in building a data warehouse is 

aggregating this information over time while supporting 

fast query access and ensuring accurate results [4]. By the 

way that you architect it on how you manage dimensional 

history is going to permeate throughout your entire 

warehouse. These decisions have far reached 

implications, especially around the complexity of ETL 

logic that needs to be performed, how much storage is 

needed and performance of queries and last but not the 

least business tools that can be used by end-users. 

Conventionally, the approach to dealing with dimensional 

history has been via surrogate key techniques whereby 

sequential numbers assigned by the system are assigned 

as primary keys regardless of a business meaningful 

value [5]. For security full history records, this popular 

model employs Type 2 Slowly Changing Dimension 

(SCD) patterns implemented to maintain row version. As 

for the surrogate key designs, they require a lookup table 

and an attribute-level comparison to find changed records 

and managing the surrogate key assignment among 

multiple ETL processes [6]. For all the decades of 

improvement and variety of tool support, though, these 

methods make the architecture more complex and slow 

things down — a bigger deal when data sizes reach 

petabyte scale. 

Original Researcher Article 

https://acr-journal.com/
https://acr-journal.com/
https://acr-journal.com/
mailto:Reddaiah.Kasturi@yahoo.com
mailto:raghav.nellikondi@gmail.com


How to cite : Mr. Reddaiah Kasturi, Mr. Raghavendar Nellikondi, Managing Dimensional History in Data Warehouses A 

Comparative Analysis of Hash-Based and Surrogate Key Approaches.  Advances in Consumer Research. 2024;1(1): 28-35 

Advances in Consumer Research 29 

 

 

Recent advancements in computer science and encryption 

techniques now enable us to utilize hash functions in 

novel ways for handling dimensional data. Hash-based 

techniques Cryptographic algorithms, such as SHA-256, 

are employed to convert the dimensional traits into 

deterministic identifiers. This results in natural keys 

displaying dimensions state naturally [7]. This paradigm 

shift eliminates the extra work required on the backbone 

side to create surrogate key and maintain look up tables. 

It also enables automatic discovery of comparing changes 

by simple hash comparison mechanisms. Since hash 

generation is deterministic, it can be done in parallel 

without coordination thus could be very useful for 

distributed data warehouse designs [8]. 

Despite the theoretical sounds, here’s really not that 

much research/science that shows how these methods 

compare against the well-known surrogate key handling 

techniques to date. Much research focus on some part of 

the process like speed of ETL or optimizing query without 

considering all operational factors [9]. Beyond that, the 

rapid evolution of database technologies such as columnar 

storage engines, in-memory processing and cloud-native 

architectures means that old ideas about how best to 

handle dimensions need to be revisited. When 

organizations are designing new data warehouses or 

updating older data warehouse systems they require 

empirically-based guidance on how to select dimensional 

history management techniques that will be the most 

effective for their workload and performance targets [10]. 

To address these shortcomings, this paper performs a 

systematic comparison of hash-based and surrogate key 

methods to maintain dimensional history in the context of 

modern data warehousing. We consider architectural 

design, complexity of implementation, ETL processing 

performance, query execution efficiency, storage 

requirements and scalability allure. By creating controlled 

experimental setups based on typical industry 

benchmarks and with real-world workload characteristics, 

we present empirical evidence to quantify trade-offs 

associated to each of them. Instead of relying on intuition 

or vendor recommendations, the findings enable data 

warehouse architects and practitioners to make informed 

decisions with an understanding of what impact those 

decisions will have on performance. 

The remainder of this paper goes as follows: In Section 2, 

we review relevant literature which discusses dimensional 

modeling methodologies, historical change management 

approaches and data warehousing performance improving 

techniques. We describe our research methods in Section 

3. These contain architectural details of the two methods 

and the experiments design, along with metrics for 

performance and testing. There is a wealth of information 

in Section 4 about our experimental results, but also plenty 

of discussion about what those experimental results 

actually imply for practitioners. The final subsection of 

Section 5 is a conclusion that includes major findings and 

suggestions which architectures are more suitable in 

different heterogeneous deployment situation, and 

directions for further research from the aspect of 

dimensional history management. 

2. Literature Review 

2.1-Dimensional Modeling Foundations 

The concepts behind dimensional modeling have evolved 

considerably since the ’80s when decision support 

systems first appeared. The initial research indicated a 

fundamental difference between two types of databases: 

normalized operational ones are good with transactions, 

denormalized analytical ones are good with queries. The 

star schema emerged as the dominant way to present data, 

with fact tables in the center surrounded by dimension 

tables containing descriptive properties. This architecture 

favors simplicity and speed of query over storage 

optimization, which is consistent with how analytical 

workloads are usually structured. Later developments 

included snowflake schemas with normalized dimension 

hierarchies and galaxy schemas where fact tables 

reference more than one dimension table. These increased 

flexibility in the representation of dimensional designed 

to meet complex analytic requirements [11]. The idea 

behind dimensional modeling totally transformed the 

way organizations think about analytical databases—they 

lined up technical constructs with business objectives. 

This enabled non-technical users to write analytical 

queries, and performance of queries was enhanced thanks 

to denormalization techniques [12]. 

2.2 Slowly Changing Dimension Techniques 

Classifying slow changing dimension methodologies 

resolved us the way of how to handle time-changing in 

DW. Type 1 SCD modifies existing numbers of attributes 

so eliminates any previous states. Type 2 SCD detail all 

historical records by writing new dimension rows for 

each change, complete with handy date ranges and current 

record pointers. Degree-3 SCD maintains only a little 

information by creating multiple columns for the historic 

values of an attribute. All three techniques are better 

adapted to addressing particular analytic requirements. 

Type 2 approaches are preferred in work environments 

where detailed historical analysis is indispensable (13). 

With traditional approaches, hunting after changes in 

attributes is a tough cookie when you need to create new 

dimensional rows and maintain referential integrity on 

fact tables. The amount of work required to discover such 

changes grows linearly with the number of attributes that 

are tracked [14]. This can be slow if the inputs are large. 

2.3 Surrogate Key Architecture and Implementation 

Patterns for implementation usually include sequence 

generators that give numbers that keep going up, lookup 

tables that connect business keys to current surrogate 

identifiers, and ETL logic that manages key assignment 

during dimensional processing [15]. There are pros and 

cons to each performance trait. When you use small 

integer keys for index structures and comparison 

operations, join operations work much better. However, 

the need to traverse lookup tables during ETL processing 

adds delay, especially in systems that process a lot of 

changes at once. There is still a small amount of extra 

storage needed, but having different lookup tables and 

indexes for them increases that need [16]. 

2.4 Hash-Based Approaches and Data Vault 

Methodology 



How to cite : Mr. Reddaiah Kasturi, Mr. Raghavendar Nellikondi, Managing Dimensional History in Data Warehouses A 

Comparative Analysis of Hash-Based and Surrogate Key Approaches.  Advances in Consumer Research. 2024;1(1): 28-35 

Advances in Consumer Research 30 

 

 

A big difference from the old way of doing is with 

surrogate Keys, is that we are seeing hash-based 

dimensional identification become more widespread 

which leverage on hashing functions to output 

deterministic keys based on business attributes. The Data 

Vault modeling methodology was the pioneer of 

intentionally utilizing hashing in corporate data 

warehousing. It did so by applying the MD5 and SHA-256 

algorithms to produce unique identifiers which naturally 

exhibit state in a dimensional way. This approach 

eliminates the use of lookup tables by computing hash 

values directly from source attributes. This enables 

multiple tasks to run concurrently without additional 

coordination work, and it simplifies ETL architectures 

[17]. The way hash-based change detection reduces 

attribute comparison to a single hash value comparison 

helps algorithms to be more efficient, and that is one of 

the key for many trackable attributes on dimensions. So 

there are pluses and minuses in using 32-byte hash values 

in reality instead of integer keys [18]. 

3. Methodology 

3.1 Research Design and Approach 

An experimental investigation is employed to evaluate 

hash-based and surrogate key monitors of dimensions in 

the context of data warehouse. The study combines 

quantitative and qualitative analysis of the outcomes, and 

implementation characteristics. Our approach involves 

designing and implementing two parallel data 

warehouse/mart architectures, one for each of the goal 

approaches. Finally, we evaluate them under the 

laboratory prototype. The experimental environment is 

based on standard TPC-H datasets scaled at different 

volumes. This allows for a complete study of a variety of 

operational situations. 

A well-defined six-step approach leads the research 

methodology. We begin by describing the theoretical 

frameworks and architectural constraints of both 

approaches. We then implement prototype systems for 

each technique in the same hardware and software 

environment to confirm validity of our experiments. For 

the third phase, performance is evaluated in a methodical 

fashion against predefined metrics like query response 

time and ETL processing time, storage consumption, and 

how accurate change detection can be. Finally, we 

compare all the data in order to extract important insights 

and useful suggestions. 

3.2 Architecture of the Proposed System 

The proposed architecture includes two separate but 

essentially identical data warehouse implementations that 

are meant to make it easier to compare the hash-based and 

surrogate key approaches directly. Both architectures 

have a three-tier structure with source systems, an ETL 

processing layer, and an analytical data warehouse layer. 

This makes sure that the experimental conditions are the 

same and that the dimensional management technique is 

the only variable that matters. 

3.2.1 Hash-Based Architecture 

The hash-based design manages multiple dimensions of 

history by using cryptographic hash generation and 

comparison tools. Using hash values from dimensional 

attributes as natural identifiers for change detection and 

version tracking gets rid of the need for standard surrogate 

key lookup tables. Figure 1shows the Hash-Based 

dimensional history Architecture. 

Data Source Layer: The source layer is made up of 

operational databases that store transactional records that 

have characteristics that can change over time. Among the 

types of physical data that source systems provide are 

information about customers, products, suppliers, and 

timestamps. Based on last-modified timestamps or other 

change data capture methods, the extraction process takes 

both full snapshots and small changes. 

Hash Generation Module: This module calculates the 

cryptographic hash value for each dimensional record. It 

is the heart of the hash-based method. When attribute 

values are joined together, the hash function creates fixed-

length numbers that uniquely represent dimensional 

states. For hash generation, we use the SHA-256 method 

because it is reliable against collisions and quick to run. 

Equation (1) shows how the process of making a hash can 

be written: 

(1) 

where H(d) represents the hash value for dimension record 

d, aᵢ denotes individual attributes, and || represents string 

concatenation. This deterministic function ensures that 

identical attribute combinations always produce identical 

hash values, enabling automatic change detection through 

hash comparison. 

Change Detection Engine: The source cache provides 

the newly computed hash values that the change detection 

engine compares to the previously stored hash values in 

the dimensional table for changes. When a hash difference 

exists, versioning begins - the system knows that there is 

a change in dimensions. The reasoning for search of 

changes can be expressed as equation (2): 

(2) 

where Δ(d) is a binary indicator of dimensional change. 

This mechanism eliminates the need for explicit attribute-

by-attribute comparison, significantly reducing 

computational overhead during ETL processing. 

Dimension History Table: Historical dimension table 

maintains historical details about time and hash values 

serve as natural key for looking up changes. The record 

also contains the Hhash value, and full dimensional 

properties, effective dates, and version indicators as well. 

The structure for the table lends itself to Type 2 Slowly 

Changing Dimensions by simply maintaining all prior 

versions Data can be easily retrieved and joined with 

other data via the hash value. 

Fact Table Integration: Fact tables refer to dimensional 

records through hash values, not typical surrogate keys. 

This also simplifies the ETL logic by avoiding lookup 

operations during fact load. To do a join, hash use foreign 
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key links directly and it is really hard to make a join 

operation as follows: (3) 

(3) 

where n represents fact table cardinality, m represents 

dimension table cardinality, and the logarithmic 

component reflects hash-based index efficiency. 

 

Figure 1: Hash-Based dimensional history Architecture. 

3.2.2 Surrogate Key Architecture 

The surrogate key design in Figure 2 handles dimensional 

history using system-generated sequential keys and 

explicit change tracking capabilities. This old-style way 

of doing persists the surrogate values that are not 

associated with business attributes. To detect changes and 

accommodate versions, it require lookup tables and 

additional ETL logic. 

Data source Layer : The original layer required current 

data for dimensional analysis like the hash-based design. 

In order to provide for comparability of experimental 

results the extraction method is kept constant. 

Surrogate Key Generator – This flow creates a file with 

sequential integers to be used as the primary keys for 

dimension records. The creator is vigilant about keeping 

atomic countermeasures to ensure that all versions are 

unique. Equation (4) describes the process of assigning a 

substitute key: 

 

(4) 

where SK(d) is the new surrogate key and MAX(SK) is 

the max number of an existing surrogat key. Generation 

of the keys is predictable with this method, and does not 

increase computational load a great deal, but it requires 

management of permanent state. 

Attribute Comparison Module: To detect changes in the 

surrogate key structures, it is required to compare source 

records versus actual dimensional data at the attribute 

level. The module iterates through each attribute and 

looks for modifications that trigger a new version to be 

created. Where 5 shows to write comparison complexity. 

(5) 

where C(d) is the total number of comparisons for record 

d in the dimension and n is the number of characteristics 

that can be tracked. This method requires more computing 

power than hash-based ones, especially for dimensions 

with lots of characteristics. 

Dimension Lookup Table: The lookup table keeps track 

of links between business keys and current surrogate key 

values, which makes it easier to load facts from other 

tables. This extra structure takes up extra space and needs 

to be maintained when the dimensions are changed. This 

lookup table has to be traversed by query operations, 

which slows down ETL processes. 

SCD Type 2 Implementation: The Slowly Changing 

Dimension Type 2 solution keeps historical records safe 

by adding new rows for changed dimensions while 

keeping indicators of temporal validity. There are 

effective start dates, end dates, and present record flags in 

each version. Surrogate keys are used in the fact table, and 

historical analysis gets the right versions depending on the 

time frame. 

Fact Table Integration: In fact tables, there are substitute 

key references that need to be looked up during the load 

process. Before adding facts, the ETL process needs to 

search the dimension lookup table for business keys and 

surrogate keys. Equation (6) can be used to describe this 

extra step as: 

(6) 

where FK(f) represents the foreign key for fact record f, 

BK(f) denotes the business key, and DIM_LOOKUP 

represents the lookup table operation. 
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Figure 2: Surrogate Key Dimensional History 

Architecture. 

3.3 Performance Evaluation Framework 

The performance evaluation methodology defines 

common benchmarks and metrics that will compare the 

two architectural paradigms. We prepare comprehensive 

test cases which load the initial data, make minor changes 

at different frequencies, execute complex analytical 

queries, and run multiple tasks simultaneously as in 

production use. We execute each of them multiple times 

for each test case to ensure statistical soundness, and we 

measure a number of performance indicators such as 

execution time, resource utilization and accuracy. 

Automated experimental data collection tools are 

employed to record detailed performance statistics during 

experiment runs within the evaluation framework. This 

makes deep comparisons over large sets of system 

behavior variables possible. 

3.4 Setting up the experiments and collecting data  

To muck off the differences of infrastructure as well, we 

are provided with the same hardware specification in 

experimental environment, such as 32GB Memory, 8-core 

CPU and SSD. In order to compare against each other 

successfully, both designs rely on PostgreSQL database 

management systems with the same configuration 

settings. We create fake datasets using TPC-H benchmark 

specs scaled to 10GB, 50GB, and 100GB data sizes with 

which we illustrate the effects on scalability. In 

dimensional data, there exist the dimensions of 

customers, products and suppliers; attribute distributions 

and change tendencies are directly related to real business 

circumstances. 

4. Results and Discussion 

4.1 Performance Comparison Results 

The experimental testing of both dimensional methods to 

history management shows big differences in how well 

they work across a number of operational areas. Our 

structured testing with different amounts of data and 

workloads gives us a full picture of how design choices 

affect real-world data warehouse setting are shown in 

table 1. 

 

Table 1: ETL Performance Metrics Comparison 

Metric Hash-

Based 

Approac

h 

Surrogat

e Key 

Approac

h 

Performanc

e Delta 

Initial Load 

Time 

(10GB) 

142 

seconds 

189 

seconds 

33.1% faster 

Initial Load 

Time 

(50GB) 

698 

seconds 

1,021 

seconds 

46.3% faster 

Initial Load 

Time 

(100GB) 

1,456 

seconds 

2,187 

seconds 

50.2% faster 

Incremental 

Update (1% 

change) 

8.3 

seconds 

14.7 

seconds 

77.1% faster 

Incremental 

Update (5% 

change) 

41.2 

seconds 

73.4 

seconds 

78.2% faster 

Incremental 

Update 

(10% 

change) 

84.5 

seconds 

148.9 

seconds 

76.2% faster 

Change 

Detection 

Time 

2.1 

seconds 

9.8 

seconds 

366.7% 

faster 

Memory 

Consumptio

n (GB) 

4.2 6.8 38.2% less 

 

Performance of ETL This performance test of ETL proves 

the hash-based method is significantly better in all cases 

we experimented. First Load Actions Always 

WinAlways, by 3-5%If you look at the amount of data 

being loaded, it magnifies with more. This scaling 

characteristic indicates that hash-based methods retain 

their efficiency gains as the size of the warehouse grows, 

an important consideration for commercial deployments. 

Even greater improvements emerge for incremental 

updating tasks, where hash-based change detection 

reduces processing effort by an average of 77%. The much 

larger 367% drop in change detection time is the result of 
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standard surrogate key architectures having to perform 

attribute by attribute comparison logic. 

Table 2: Query Performance and Storage Analysis 

Metric Hash-

Based 

Approac

h 

Surrogat

e Key 

Approac

h 

Performanc

e Delta 

Simple Join 

Query (ms) 

234 187 25.1% 

slower 

Complex 

Aggregation 

(ms) 

1,842 1,456 26.5% 

slower 

Historical 

Point Query 

(ms) 

45 38 18.4% 

slower 

Temporal 

Range 

Query (ms) 

892 734 21.5% 

slower 

Dimension 

Table Size 

(GB) 

12.4 11.8 5.1% larger 

Fact Table 

Size (GB) 

87.6 86.2 1.6% larger 

Index Size 

(GB) 

8.9 7.4 20.3% larger 

Total 

Storage 

(GB) 

108.9 105.4 3.3% larger 

Query 

Optimizatio

n Score 

7.2/10 8.6/10 16.3% lower 

An investigation of the query speed follows a different 

pattern: for all queries, surrogate key approach is faster in 

execution. Plain join operations perform about 25% 

better using integer surrogate keys as opposed to hash-

based string values. That's because database optimizers 

love those small numeric types. These advantages extend 

to complex aggregation queries as well, which benefit 

from fewer things that need to be compared and better 

indices. The assessment of storage in Figure 7.3 indicates 

that only minor differences exist between the methods. 

For instance, since the keys are longer in hash-based PSQs 

they require an additional 3% space. The 20% larger index 

is because SHA-256 hash strings have a larger length 

than sequential integers. This extra distance is acceptable, 

however, in view of the total size of the warehouse as 

indicated in Table 2. 

 

Figure 3: ETL Processing Time Comparison Across Data 

Volumes. 

Figure 3 illustrates the scalability of both methods from 

10 Gb to 100 Gb data. The hash-based methods show 

better linear scalability and a flatter slope, when the 

surrogate key based method suffers from more processing 

overhead, as increases. The varying lines with differing 

colors, demonstrate that the hash-based methods improve 

performance as the size of the warehouse grows. This 

makes them ideal for ETL-heavy workloads in large 

business deployments. 

 

Figure 4: Query Response Time Distribution by Query 

Type. 

We compare the performance of five different query types 

in Fig 4: Simple joins, Complex aggregations, Historical 

point queries, Temporal range queries and 

multidimensional analytics. In general, the stacked bar 

chart compiles evidence to show that surrogate key 

approaches are invariably superior for all question types 

by large margins (15-30%). This is the tradeoff that 

builders can decide to take or make when selecting 

dimensional management strategy – ETL processing 

speed vs query speed. 
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Figure 5: Storage Utilization Breakdown by Component. 

Figure 5 provides an in-depth look at the amount of space 

consumed by some of the components within a 

warehouse, including: dimension tables, fact tables, 

indexes and metadata structures. Comparing via stacked 

bars shows that hash-based approaches do require more 

storage but not by much: about 3% of the total 

warehouse. The one type of variation in storage 

requirement comes from the index structures, as these 

contribute most to the extra space required by hash-based 

implementations. 

4.2 Discussion of Findings 

Test results demonstrate there are fundamental trade-offs 

in how to manage dimensional history that directly 

impact design decisions. If your priority in ETL is change 

detection and data loading speed, you’ll be better off with 

hash-based strategies. On the contrary, surrogate key 

methods fit better for analytical jobs with many queries. 

Because the contrasts in speed are so large, workload 

characteristics should determine architecture choice 

rather than relying on universal best practices. 

The real performance gains in ETL that hash-based 

techniques provide are achieved by not requiring you to 

write any explicit change detection logic, load lookup 

table lookups when processing dimensions. Hash based 

detection of change reduces comparing the multiple 

attribute with a single hash value. This simplifies the 

method and leads to very large time savings in 

calculations. For those businesses with a high volume of 

dimensional refreshes, an average 77% incremental 

reprocessing speedup is highly valuable (operational 

value). Surrogate key solutions simply run faster for 

queries because they are a basic database optimization 

technique that will often choose continuous integer 

values over variable-length string hashes. For accelerating 

join evaluations, contemporary query optimizers benefit 

from integer key properties such as the ability of 

predictable memory layout and efficient comparison 

operations. A 25% difference in query performance 

maybe the answer for businesses where fast analytical 

queries are more important than efficient ETL times. 

Storage overhead analysis demonstrates that hash-based 

techniques require only a small amount of extra space ( 

3% relative to the total warehouse size). SHA-256 hash 

result has 32 bytes length Integer replacement keys are 

only 4 or 8 bytes in size. Although at the fact table level 

you don’t see this extra space. The scalability study 

indicates that, the hash-based methods have a better 

scaling behavior with increasing data size, and the 

performance gains further increase as is increased. That 

behavior indicates that for companies that anticipate a lot 

of growth in their data, hash-based methods become more 

attractive. In reality, rollout decisions go beyond 

performance. There are also factors involving how 

difficult implementation is and how easily it can be 

maintained. Hash-based approaches remove the reliance 

on lookup tables, thus simplifying ETL codebases and it 

also enables parallel processing without the need to do 

additional coordination. Surrogate key technique is the 

best. If it uses many tools and its well-known design 

pattern then, also data warehouse experienced 

professional easy to work with that. 

5. Conclusion 

The effect of hash-based and surrogate key on DW 

dimensional history This study compares two approaches 

to the updated map management in a DW, i.e. It 

demonstrates that there are trade-offs at play which really 

impact design decisions. The test results demonstrate that 

the hash-based approach is very good during ETL 

processing. They increase the incremental update speed 

by 77% on average and significantly reduce the change 

detection overhead by removing the attribute-level 

comparison logic. Since the hash generation is 

deterministic, this makes ETL architecture simpler by 

eliminating lookup tables and allowing for fast parallel 

processing without signal collaboration. Instead, 

surrogate key methods consistently outperform even the 

best NATURAL KEY method on queries by about 25% 

due to database optimizers and their use of compact 

integer keys and index structures. 

The analysis of storage indicates overhead is similar, 

within 3%. Which is to say that storage considerations 

should not be the primary focus of architectural decisions, 

given the declining cost of storage relative to computing. 

The scaling aspect makes hash-based implementations 

more suitable for larger batches of data, and the 

performance benefits increase as a warehouse grows 

bigger. Hash-based approaches should be considered by 

those organizations wishing to reduce the overhead of 

ETL and keep architecture straightforward. This is 

particularly applicable for those handling dynamic 

dimensionality or setting up distributed processing 

frameworks. Alternatively, surrogate key methods are 

good for analytical workloads which have high queries 

and less volatile dimensions. Hybrid architectures that 

mesh hash-based change detection with surrogate key 

query optimization are a topic for further research. These 

might be the best-performant ones for ETL as well as 

analytics, and could evolve to accommodate changing 

requirements such as those required of real-time data 

warehouses.
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