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ABSTRACT

The rupture of aortic aneurysms is a life-threatening and most fatal condition and predicting
them is a major concern in clinical practice. The traditional risk assessment protocols are mainly
based on the diameter of an aneurysm, which does not capture the biomechanical and clinical
variance in patients adequately. This paper suggests a machine learning-based architecture of
rupture risk forecasting in aortic aneurysms through combination of imaging biomarkers using
computed tomography angiography with a detailed clinical history. The data set was analysed
on a retrospective basis of 620 patients and includes morphological and biomechanical imaging
features in addition to demographic as well as clinical variables. Four monitored learning
schemes; Logistic Regression, Support Order machine, Random forest, and Extreme Gradient
Boosting (XGBoost) were composed and assessed. Experimental findings indicated that the
ensemble-based models performed better than the linear models where XGBoost had the best
performance of not only 89.4% accuracy, sensitivity of 0.86, specificity of 0.91, but also an area
under the receiver operating characteristic curve (AUC) of 0.92. The analysis of the importance
of features the most prominent predictors of rupture were found to be peak wall stress, aneurysm
diameter, intraluminal thrombus volume, and growth rate. The framework presented in the
research demonstrated a significant improvement in predictive accuracy over traditional
methods that rely on the diameter-based and statistical methods. The results reveal the clinical
possibilities of multimodal risk stratification based on machine learning to aid personalised
decisions and outcomes in the treatment of aortic aneurysms.

Keywords: Aortic aneurysm, rupture risk prediction, machine learning, imaging biomarkers,

clinical decision support..

1. INTRODUCTION:

Aortic aneurysms are a serious cardiovascular disease,
which is characterised by the abnormal expansion of the
aortic wall, and there is a high risk of its rupture leading
to high mortality rates. Although diagnostic imaging and
clinical management have improved, it is quite
challenging to successfully predict aneurysm rupture, and
this is one of the biggest problems in the field of vascular
medicine [1]. The contemporary usage of clinical
judgment is mostly based on the easy anatomical criteria
of the largest diameter of the aneurysm and its velocity of
increase. Nevertheless, several researchers have
demonstrated that rupture is possible in an aneurysm with
a size smaller than the suggested intervention, and many
of the large aneurysms are asymptomatic, which has
raised the shortcomings of the traditional risk evaluation
methods. New advances in medical imaging now allow
the elicitation of high-order imaging biomarkers, such as
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aneurysm structure, walls stress distribution, intraluminal
thrombus, and tissue heterogeneity [2]. Such biomarkers
are a more detailed reflection of biomechanics and
pathological course of aneurysms, compared to diameter.
Simultaneously, patient-related clinical profiles (age, sex,
blood pressure, smoking history, genetic predisposition,
and co-morbidities) are major factors contributing to
behaviour and estimation of aneurysm rupture. The
combination of these heterogeneous sources of data
creates large analytical complexity that traditional
statistical models cannot handle. Machine learning (ML)
provides an effective paradigm on how to tackle this
complexity by detecting non-linear motifs and dynamics
in high-dimensional data streams [3]. The use of ML-
empowered predictive models capable of integrating
imaging-based biomarkers with clinical variables enables
the creation of personalised estimates of ruinous risk to be
used in precision medicine in vascular services. These
models can enhance predicting high-risk patients at an
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carly stage, optimize surveillance cycles, and inform
patients of proper intervention, which in turn can
eliminate unnecessary operations and catastrophic rupture
occurrences. The study is aimed at the formulation and
testing of an artificial intelligence-based scenario of
predicting rupture in aortic aneurysms through
multimodal  imaging  biomarkers and  clinical
characteristics. The proposed solution will inform
clinicians with the help of data-driven decision tools that
go beyond diameter metrics to risk stratification according
to patient characteristics to improve clinical outcomes and
resource use in the management of aneurysms ultimately.

2. RELATED WORKS

The recent developments in the field of cardiovascular
research placed an increased importance on the
combination of computational modelling, current
imaging, and artificial intelligence to enhance the risk
prediction and personalised clinical decision-making in
vascular diseases. Within the setting of aortic aneurysms,
the dichotomy of standard diameter based assessment has
been heavily criticised to be insufficient to reflect patient-
specific rupture, so methods of exploring the information
of data-driven and biomechanically aware assessment
methods are being actively sought. Computational
hemodynamics has become one of the primary areas of
research in the knowledge of aneurysm development and
rupture. The significance of flow descriptors like wall
shear stress, oscillatory shear index and pressure gradients
in vascular pathology characterisation was signified by
Ene-lordache Bogdan [15]. These hemodynamic variables
can give a mechanistic understanding of aneurysm wall
degeneration and are in addition to purely geometrical
indicators. Equally, Hu et al. [19] conducted a literature
review of computational fluid dynamics (CFD) modelling
of aortic aneurysms and dissection showing that patient-
specific simulations can identify high-risk flow patterns
and stress concentration in rupture. Fluid structure
interactionist models build upon this paradigm theme
further by linking blood flow with vessel wall mechanics
and their systemic discussion [25] by Mourato et al. which
has now been but sparsely exploited in clinical
applications in the recent past. The imaging technologies
have expanded the range of biomarkers used in the
evaluation of cardiovascular risks. Multi-modality
imaging can be assessed using CT, MRI and PET which
allow such detailed assessment of vascular morphology,
tissue composition and functional parameters. The study
of Goldie et al. [17] showing that multiple imaging
techniques can be used to enhance phenotyping in
hypertrophic cardiomyopathy can be applied to the study
of aneurysms. Moreover, Giacobbe et al. [16] emphasized
the role of gender medicine in clinical radiology and
revealed that imaging characteristics and disease
distribution may be sex-specific and affect the quality and
correctness of diagnoses. Such results can be of special
significance in current applications of the prediction of
ruptures caused by aneurysms as the rupture rates and
progression vary in men and women.

Aneurysm heterogeneity has also been better understood
through the biological and molecular perspectives.
Mathias et al. [24] investigated the possibility of

embryological difference and molecular pathways that
distinguish thoracic and abdominal aortic aneurysms and
found that stratified modelling should be applied. In line
with this, Hu et al. [20] talked about the use of spatial
omics in cardiovascular studies and provided the new
possibilities of molecular data interactions with imaging
and clinical variables. Herzog et al. [18] thoroughly
discuss vascular aging and arterial stiffness, which are
considered considerable risk factors in the susceptibility
of the aneurysms to aneurysm, and proof that the
biomarkers of stiffness are relevant to productive
prediction. Artificial intelligence has also become used
more and more in cardiovascular medicine assisting in
accuracy in diagnostics, as well as, predicting outcome.
According to Kolaszynska and Lorkowski [22], it was a
scoping review of Al in cardiology and atherosclerosis,
which showed a consistent improvement in performance
compared to traditional statistical techniques. The article
by Leivaditis et al. [23] in a different area of surgery has
demonstrated the effects of Al-assisted decision support
systems, which are revolutionizing cardiac surgery
because they enhance risk classification and pre-operative
deviation planning. These tendencies correspond to the
expanded use of Al in neurovisualization or risk
surveillance, as the review by Omarov and Aliyeva [26]
suggests, and support the idea that machine learning can
be diversified to more challenging biomedical prediction
tasks.

3. METHODS AND MATERIALS

The present study uses a retrospective machine learning-
based study design by identifying rupture risk of aortic
aneurysms by combining imaging biomarkers and patient-
specific clinical profiles. The complete popularity
involves the data gathering, pretreatment, attribute
mining, model learning by four supervised learning
categorizations and resultant analysis [4].

Data Sources and Study Population

The data includes anonymised records of 620 patients of
whom 31 were diagnosed with a thoracic or abdominal
aortic aneurysm. The data acquired were imaged data
through  contrast-enhanced computed tomography
angiography (CTA), and clinical data through electronic
health records. Aneurysm rupture status during a two
years period was the outcome variable (binary: rupture /
non-rupture) [5]. Maximum diameter of an aneurysms,
volume of the aneurysm, variability of the thickness of the
walls, and volume of an intraluminal thrombus (ILT) as
well as surface curvature and estimated peak wall stress
were measured and saved as imaging biomarkers. The
clinical variables included the age, sex, systolic blood
pressure, smoking status, diabetes, hyperlipidaemia,
family history, and rate of aneurysm growth. Continuous
variables in the data set were imputed with median
imputation, and categorical variables were imputed with
mode imputation because their missing values were less
than five percent. Continuous variables were z-score
standardized to make all continuous variables [6].

Machine Learning Algorithms

The four machine learning algorithms have been chosen
according to their applicability to medical risk prediction,
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capability to learn non-linear relationships and a proven
applicability in the medical field.

Logistic Regression (LR)

The Logistic Regression is a common clinical risk
prediction model that is a baseline statistical learning
model. It approximates the likelihood of aneurysm rupture
and models the log-odds of the outcome as a linear
regression of both imaging and clinical characteristics. LR
is interpretable with high feature coefficients though it
lacks the ability to capture complex non-linear
interactions so clinicians may gain insight into the relative
importance of the individual biomarkers [7]. L2
(regularisation) was then used to decrease overfitting and
enhance generalisation, which is an LR that can be used
clinically to compare itself.

“Input: Feature matrix X, labels y

Initialise weights w

Repeat until convergence:
Compute predicted probability p = sigmoid(Xw)
Compute loss using cross-entropy
Update weights w using gradient descent

Output: Trained weight vector w”’

Random Forest (RF)

Random Forest is a type of ensemble learning, which
builds several decision trees based on the randomly
selected subsamples and on the randomly chosen sets of
features of the training data. All the trees are majority-
voted and the final prediction is achieved. RF is found to
be good in non-linear relationships and interactions of
features between imaging biomarkers and clinical profiles
[8]. It is also strong against noise, and its overfitting
properties are lower than those of single decision trees,
and also its feature importance measures are also very
useful with heterogeneous medical data.

“Input: Training data D
Fori=1to N trees:
Sample data Di with replacement
Grow decision tree using random feature subsets

Aggregate predictions from all trees by majority
vote

Output: Final class prediction”

Support Vector Machine (SVM)

The Support Vector Machine is a type of margin-
separated classifier which uses an optimal plan to split
rupture and non-rupture cases in a high-dimensional
feature space. The use of a radial basis function (RBF)

kernel was used to curve non-linear boundaries between
classes. SVM is found to be very useful in the working of
complex decision surfaces as also when dealing with high-
dimensional biomedical features [9]. Nonetheless, it
should be hyperparameter-tuned and does not have as
much interpretability as tree-based algorithms.

“Input: Feature matrix X, labels y
Select kernel function (RBF)

Optimise  margin by solving quadratic
optimisation problem

Identify support vectors

Classify new data based on decision function”

Extreme Gradient Boosting (XGBoost)

XGBoost is a gradient boosting platform that creates an
ensemble of successive decision trees, with each new tree
successively rectifying the errors of the prior ones. It
employs the regularisation, shrinkage, and subsampling
strategies to improve the predictive results and avoid
overfitting. XGBoost works well with structured clinical-
imaging data, to include small implicit non-linear
interactions, as well as hierarchies of features of
importance to risk of aneurysm rupture [10].

“Input: Training data D
Initialise prediction with base score
Fort=1to T trees:
Compute residual errors
Fit decision tree to residuals
Update ensemble prediction
Apply regularisation
Output: Final boosted model”

Model Training and Evaluation

The sample was divided using stratified sampling into the
training (70) and testing (30) groups in order to maintain
the class distribution. The training used five-fold cross-
validation when optimising hyperparameters. The
accuracy, sensitivity, specificity, Fl-score, and the area
under the receiver operating characteristic curve (AUC)
were used to compare them with model performance [11].

Table 1: Dataset Characteristics and Feature
Summary

Feature Variable Mean /
Category Example Percentage
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Demographic Age (years) 67.4+89

Clinical Smokers (%) 58%

Clinical Systolic BP | 142+ 18
(mmHg)

Imaging Max  Diameter | 54.6 £ 9.3
(mm)

Imaging ILT Volume | 38.2+12.5
(cm?)

Outcome Rupture  Cases | 22%
(%0)

4. RESULTS AND ANALYSIS
Experimental Setup

All of the experiments were based on a stratified train-test
split to make sure that there was an even and equal
representation of rupture and non-rupture samples. The
620 patient dataset was split into two (testing and training)
with 70% and 30%, respectively. Five-fold cross-
validation was presented on the training set to increase
strength and minimize sampling bias. The grid search
optimised the hyperparameters of each of the four models.
Some of the most important hyperparameters were the
regularisation term of the Logistic Regression, trees and
maximum depth of the RanDom Forest, Support Vector
machine kernel parameters (C and y), and learning rate,
maximum depth, and the number of estimators of
XGBoost [12]. As the measures used in the model
evaluation were clinical risk prediction relevant, sensitive
and AUC because they measure the likelihood of the
model to predict high-risk aneurysms correctly.

Imaging the Calculating the Administering
Aorta rupture risk the treatment
locally

/&f Point of highest

rupture risk

[Point of highest
rupture risk

Figure 1: “New Trends of Personalized Medicine in the
Management of Abdominal Aortic Aneurysm”

Overall Predictive Performance

The four models were found to have different prediction
abilities with the models of ensembling always
performing better as compared to the other models of the
linear and margin based models. Most of the metrics
demonstrated that XGBoost was the most performing,
then there was random forest, SVM and Logistic
regression.

Table 1: Overall Model Performance on Test Set

Model Accur | Pre | Recall F1- | AU
acy cisi | (Sensitivi | Sco | C
(%) on ty) re

Logistic 78.5 0.74 | 0.71 0.72 1 0.8

Regressio 1

n

Random | 86.2 0.84 | 0.83 0.83 1 0.8

Forest 9

SVM 84.6 0.81 | 0.81 0.81 | 0.8

(RBF) 7

XGBoost | 89.4 0.87 | 0.86 0.86 | 0.9

2

Self-surpassing performance of XGBoost is explained by
the fact that it was capable of modeling sophisticated non-
linear interactions of imaging biomarkers with clinical
variables. Logistic Regression, which is interpretable, was
limited in the ability to fit such interactions, leading to
relatively low sensitivity [13].

A

Health Record Research Request

Clinical
Data

Data
clean-up

Data Selection

Metadata
Analysis

Image-Based
Studies

Wy i
§ { a c Morphological
Q% Analysis

Image
= S

35 Surface
Reconstructiol

DBiomechanir.‘al
Analysis

Figure 2: “An artificial intelligence based abdominal
aortic aneurysm prognosis classifier to predict patient
outcomes”

Impact of Imaging Biomarkers and Clinical Features

Three configurations of features, namely, clinical features
and imaging biomarkers or combined clinical-imaging
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features, were used to determine the contribution of
multimodal data integration through the use of
experiments.

Table 2: Performance of XGBoost Under Different

Feature Sets

Feature Set | Accuracy | Sensiti | Specifi | AUC
(%) vity city

Clinical 78.9 0.73 0.82 0.80
Only

Imaging 84.1 0.80 0.86 0.86
Only

Clinical + | 89.4 0.86 0.91 0.92
Imaging

These findings clearly show that imaging biomarker and
clinical profile combinations have greater predictive
accuracy and discrimination potential. The results have
demonstrated that imaging-alone models were more
efficient compared to clinical-only models, which
confirms the significance of biomechanical and

1 Peak Wall Stress 0.21

2 Maximum  Aneurysm | 0.18
Diameter

3 Intraluminal Thrombus | 0.15
Volume

4 Aneurysm Growth Rate | 0.13

5 Wall Thickness | 0.11
Variability

6 Systolic Blood Pressure | 0.09

7 Smoking Status 0.07

8 Age 0.06

morphological data when estimating rupture risk [14].
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Such results are in agreement with biomechanical
hypotheses of aneurysm rupture where structural
heterogeneity and wall stresses play a leading role. The
fact that clinical variables were included in the list of the
most significant predictors demonstrates the importance
of personalised patient-specific modelling [27].

Comparison Between Algorithms

A one-to-one comparison of algorithms shows apparent
performance concessions between interpretability and
predictability.  Logistic  Regression did provide
transparency but failed to perform well in complicated
situations, and ensemble models were more sensitive and
had higher AUC but had more computational complexity
[28].

Table 4: Algorithm Comparison Across Key Clinical

Figure 3: “Classifying Ruptured Middle Cerebral Artery

Metrics

Aneurysms With a Machine Learning Based, Radiomics-

Morphological Model” Model Sens | False Inference | Interpr

Feature Importance Analysis itivit | Negative | Time etabilit

y Rate (ms) y

Random Forest and XGBoost were used to analyse feature

importance by finding the most important predictors of

rupture. Imaging-based variables were leading the most Logistic | 0.71 | 0.29 32 High

ranked features, but key clinical factors played Regressi

meaningful roles. on

Table 3: Top Predictive Features Identified by Random | 0.83 | 0.17 12:5 Mediu

XGBoost Forest m
Rank | Feature Relative SVM 0.81 | 0.19 18.7 Low

Importance (RBF)
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XGBoost | 0.86 | 0.14 15.3 Mediu
m

Clinically, it is important to minimize false negativity
because the unidentified high-risk aneurysm is likely to
result in devastating rupture. XGBoost has the lowest
false negative rate as compared to other models, thus it is
the most clinically acceptable model even though its
interpretability is moderate [29].

Real Data z \ A

Joint Bayes

Likelihood | ™ |  Theorem
all
|

Computational Data y

Predictive Mean
Predictive Variance

Posterior Distribution

Figure 4: “Current state-of-the-art and utilities of machine
learning for detection, monitoring, growth prediction,
rupture risk assessment, and post-surgical management of
abdominal aortic aneurysms”

Comparison with Related Work

To put the results in perspective, the suggested framework
was unfolded against the representative results found in
the related machine learning-based aneurysm risk
predictions literature. The comparison of trends is relevant
even though a dataset and experimental conditions have
some differences.

Table 5: Comparison with Related Studies

Study Data Metho | AU
Type d C

Traditional Diameter- | Clinical Rule- 0.68
Based Risk Models based

Statistical Regression | Clinical + | Cox /| 0.75

Models Imaging Logisti | —
c 0.82
Deep Learning | Imaging | CNN- | 0.85
Imaging-Only Models based | -
0.89
Proposed ML | Clinical + | XGBo | 0.92
Framework Imaging | ost
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