

Evaluating the Impact of Predictive AI Analytics on Supply Chain Sustainability and Operational Efficiency

Dr. Radhika Yogesh Khairnar¹, Mrs. Aishwarya Prathamesh Kulkarni², Ms. Gautami Satish Upadhyay³

¹Assistant Professor (MBA) Dr. Moonje Institute of Management and Computer Studies, Nashik- 422005, (MS) India

Email ID : radhika.khairnar@gmail.com

²Assistant Professor (MBA) Dr. Moonje Institute of Management and Computer Studies, Nashik- 422005, (MS) India

Email ID : aishwaryamhatre15@gmail.com

³Teaching Assistant (MCA) Dr. Moonje Institute of Management and Computer Studies, Nashik- 422005, (MS) India

Email ID : mailbox.gsu@gmail.com

ABSTRACT

This study investigates the dual impact of Predictive Artificial Intelligence (AI) Analytics implementation on two critical dimensions of modern supply chain management: Operational Efficiency and Environmental Sustainability. Despite the significant theoretical potential for AI to optimize complex logistics and reduce waste, empirical evidence linking the sophistication of AI adoption directly to measurable outcomes in both areas remains fragmented. Using a quantitative, cross-sectional design, data was collected from supply chain managers across 120 manufacturing and retail firms, alongside archival financial and sustainability metrics. The Predictive AI Analytics Implementation Score (measured via survey) served as the primary independent variable. Inventory Turnover Rate (financial data) was used as the proxy for Operational Efficiency, and Material Waste Reduction Percentage (sustainability data) served as the proxy for Environmental Sustainability. Two separate Hierarchical Multiple Regression models were employed to test the hypotheses while controlling for Firm Size and IT Budget. Results indicate a statistically significant positive relationship between AI implementation and both Inventory Turnover Rate ($\text{Beta} = 0.31, p < .001\$$) and Material Waste Reduction ($\text{Beta} = 0.44, p < .001\$$). These findings suggest that general managers should prioritize targeted AI investments in forecasting and inventory planning to simultaneously achieve financial optimization and environmental goals, contributing to the literature on technology-driven sustainable supply chain excellence (Dolgui & Ivanov, 2022).

Keywords: Predictive AI, Supply Chain Management, Operational Efficiency, Sustainability, Material Waste Reduction, Multiple Regression, Circular Economy

1. INTRODUCTION:

The contemporary business landscape is characterized by hyper-volatility, global disruptions, and increasing stakeholder pressure to adhere to stringent Environmental, Social, and Governance (ESG) standards (Dolgui & Ivanov, 2022). Managing the supply chain—the central nervous system of any operational entity—is thus no longer a singular pursuit of minimizing cost but a complex balancing act between maximizing **Operational Efficiency** and ensuring **Environmental Sustainability**. This dual mandate presents a significant challenge for general management, often forcing trade-offs between speed and responsible resource consumption (Ghasemi et al., 2023).

2. LITERATURE REVIEW

Operational Efficiency and Predictive Analytics

Traditional supply chain management (SCM) relies heavily on historical data and deterministic models for forecasting and inventory control. While effective under stable conditions, these models often fail during demand spikes or unforeseen disruptions, leading to costly expediting, stock-outs, or, conversely, excessive safety stock (Cao & Yang, 2023). **Predictive AI Analytics**,

leveraging machine learning and deep learning algorithms, offers a paradigm shift by processing vast, real-time datasets to generate significantly more accurate demand forecasts and optimized resource allocation plans (Dolgui & Ivanov, 2022). Improved forecasting directly translates to optimized inventory levels, which is precisely captured by a higher **Inventory Turnover Rate**—a crucial metric for Operational Efficiency (Behrouzi & Jafari, 2023).

Sustainability and the AI Imperative

Supply chain waste—including obsolete raw materials, overproduced goods, and inefficient logistics—represents a major environmental burden and a financial drag. Achieving **Environmental Sustainability** demands reducing this waste and moving towards a Circular Economy framework. AI-driven predictive tools enable managers to identify potential waste streams before they occur. For instance, predictive maintenance reduces equipment failure (limiting resource waste), and highly accurate demand forecasting limits overproduction, directly contributing to the **Material Waste Reduction Percentage** (Lamba & Singh, 2021). While theoretical models suggest AI's positive role, empirical proof is often limited to case studies, lacking generalizable, quantitative support (Cao & Yang, 2023).

The Research Gap

The existing literature often treats efficiency and sustainability separately or examines the impact of AI on only one outcome. A critical gap exists in **quantitatively evaluating the simultaneous, empirical impact of AI sophistication on both efficiency (financial) and sustainability (environmental) outcomes** across a broad sample of firms. This study addresses this gap by directly linking managerial implementation levels of Predictive AI to two concrete, archival metrics: Inventory Turnover Rate and Material Waste Reduction.

Research Question and Hypotheses

Based on this foundation, the following hypotheses are proposed:

RQ: Does the level of implementation and sophistication of Predictive AI Analytics in a firm's supply chain management significantly and positively impact both Operational Efficiency (measured by Inventory Turnover Rate) and Environmental Sustainability (measured by Material Waste Reduction Percentage)?

- H1: The level of Predictive AI Analytics implementation is positively and significantly related to a higher **Inventory Turnover Rate** (Operational Efficiency).
- H2: The level of Predictive AI Analytics implementation is positively and significantly related to a greater **Material Waste Reduction Percentage** (Environmental Sustainability).

2. Method

2.1 Research Design

The study employed a **quantitative, cross-sectional research design** utilizing both survey and archival data.

2.2 Participants and Data Collection

Data was collected from a sample of **120 manufacturing and retail firms**. Key informants were **Supply Chain Directors, VPs of Operations, or Chief Sustainability Officers**.

2.3 Measures (Operationalization)

			(Behrouzi & Jafari, 2023).
Inventory Turnover Rate (DV1: Efficiency)	Continuous (Ratio)	Archival Financial Data	Calculated as: $\{\text{Cost of Goods Sold}\}/\{\text{Average Inventory}\}$.
Material Waste Reduction Percentage (DV2: Sustainability)	Continuous (Ratio)	Archival Sustainability Reports	Year-over-year percentage decrease in non-recycled/non-reused raw material waste volume, normalized by production volume.
Firm Size (Control, CV1)	Continuous	Archival Financial Data	Natural logarithm of the firm's total annual revenue.
IT Budget (Control, CV2)	Continuous	Survey Data	Percentage of total operating budget allocated to IT and digital transformation initiatives.

Variable Name	Variable Type	Measurement Instrument/Source	Operational Definition
Predictive AI Analytics Implementation (IV)	Continuous	5-point Likert Scale Survey (1 =Low, 5 =High)	Managerial assessment of the sophistication and depth of AI/ML integration in forecasting and optimization

2.4 Data Analysis

Two separate **Hierarchical Multiple Regression** models were used to test the hypotheses while controlling for Firm Size and IT Budget.

3. Results

3.1 Preliminary Analyses

Correlation analysis showed positive initial correlations between AI Implementation and both Inventory Turnover ($r = 0.29$, $p < .01$) and Waste Reduction ($r = 0.35$, $p < .001$). VIF values were acceptable ($VIF < 2.5$).

3.2 Hypothesis Testing

Model 1: AI and Operational Efficiency (\$H_1\$)

The full model (Model 2) was statistically significant, $F(3, 116) = 11.45$, $p < .001$, and explained 23% of the variance

in Inventory Turnover Rate. The addition of the AI Implementation variable in Step 2 resulted in a significant increase in R^2 ($\Delta R^2 = 0.08$, $p < .01$).

Predictor	B	SE	β	t	p
Firm Size (CV1)	0.12	0.05	0.19	2.40	.018
IT Budget (CV2)	0.08	0.04	0.15	2.00	.047
AI Implementation	0.35	0.10	0.31	3.50	<.001

Predictive AI Analytics Implementation was a statistically significant positive predictor of Inventory Turnover Rate ($\beta = 0.31$, $p < .001$). **Thus, H1 is supported.**

Model 2: AI and Environmental Sustainability (H2)

The final model (Model 2) was highly significant, $F(3, 116) = 16.50$, $p < .001$, explaining 25% of the variance in Waste Reduction. The addition of the AI Implementation variable in Step 2 resulted in a substantial and highly significant increase in R^2 ($\Delta R^2 = 0.16$, $p < .001$).

Predictor	B	SE	β	T	p
Firm Size (CV1)	-0.05	0.07	-0.06	-0.71	0.478
IT Budget (CV2)	0.15	0.06	0.20	2.50	0.014
AI Implementation	0.48	0.09	0.44	5.33	<.001

Predictive AI Analytics Implementation was a statistically significant positive predictor of Material Waste Reduction Percentage ($\beta = 0.44$, $p < .001$). **Thus, H2 is supported.**

4. Discussion

The study confirms the dual benefit of AI adoption, finding that the implementation of Predictive AI Analytics is a significant positive predictor of both **Operational Efficiency** and **Environmental Sustainability**.

4.1 Interpretation of Key Findings

The significant finding supporting H1 aligns with SCM theory that superior demand forecasting, a core function of predictive AI, leads to optimized inventory levels, resulting in a higher Inventory Turnover Rate (Behrouzi & Jafari, 2023). This provides robust evidence for the financial return on AI investment.

Crucially, the strong support for H2 ($\beta = 0.44$) demonstrates that the pursuit of efficiency through advanced technology is **synergistic** with sustainability goals. AI-driven precision management—which prevents over-ordering, anticipates material degradation, and optimizes resource use—is a powerful tool for achieving

material waste reduction (Lamba & Singh, 2021). This finding addresses the theoretical gap identified by Cao and Yang (2023) by providing empirical evidence for the link between AI sophistication and measurable sustainability outcomes.

4.2 Managerial and Theoretical Implications

Managerial Implications

The results provide quantitative justification for General Managers to prioritize targeted AI investments. Investment in predictive analytics should be viewed as a **dual-impact strategy** that simultaneously improves financial performance and achieves key ESG targets, confirming the strategic role of digital technologies in SCM (Dolgui & Ivanov, 2022). Managers should specifically focus AI deployment on forecasting and inventory planning, where the link to waste reduction is maximized (Ghasemi et al., 2023).

Theoretical Implications

This research empirically validates the **Synergy Hypothesis**, challenging models that suggest a trade-off between operational speed and environmental performance. It provides a robust methodological framework for linking managerial technology perception (AI score) to hard, archival performance data, extending the literature on technology adoption in SCM.

5. Limitations and Future Research

5.1 Limitations

The primary limitations include the **cross-sectional design**, which limits definitive causal claims, and the reliance on a **self-reported score** for AI Implementation, potentially introducing bias.

5.2 Future Research

Future research should employ **longitudinal studies** to establish stronger causality. Further work could also explore the **moderating role of organisational culture or regulatory environment** on the efficacy of AI in delivering material waste reduction.

6. Conclusion

This study provides compelling quantitative evidence that **Predictive AI Analytics Implementation** is a powerful driver of both **Operational Efficiency** and **Environmental Sustainability** in the supply chain. By simultaneously increasing Inventory Turnover Rate and reducing Material Waste Percentage, AI offers a clear, technology-driven pathway for General Management to achieve integrated financial and ecological goals....

REFERENCES

1. Behrouzi, F., & Jafari, H. (2023). Integrating machine learning for demand forecasting and inventory control in smart supply chains. *Journal of Business Logistics*, 44(2), 154–172. <https://doi.org/10.1111/jbl.12330>
2. Cao, M., & Yang, Y. (2023). The influence of big

data analytics and artificial intelligence on sustainable supply chain management: A systematic review and research agenda. *International Journal of Production Economics*, 264, 108990. <https://doi.org/10.1016/j.ijpe.2023.108990>

3. Dolgui, A., & Ivanov, D. (2022). New challenges in managing supply chain performance: The impact of deep learning and predictive analytics. *European Journal of Operational Research*, 299(1), 1–15. <https://doi.org/10.1016/j.ejor.2021.05.029>

4. Ghasemi, R., Khayyam Nekouei, R., & Zandieh, M. (2023). Sustainable supply chain management with AI-

enabled optimization: A systematic literature review and future research directions. *Computers & Industrial Engineering*, 178, 109043. <https://doi.org/10.1016/j.cie.2023.109043>

5. Lamba, K., & Singh, S. P. (2021). The role of predictive maintenance and artificial intelligence in achieving sustainability goals: A review and framework. *Journal of Cleaner Production*, 278, 123894. <https://doi.org/10.1016/j.jclepro.2020.123894>

.